- play_arrow Overview
- play_arrow Precision Time Protocol
- play_arrow Precision Time Protocol Overview
- play_arrow Precision Time Protocol Clocks
- PTP Boundary Clock Overview
- Example: Configure PTP Boundary Clock
- Example: Configure PTP Boundary Clock With Unicast Negotiation
- Configure PTP TimeTransmitter Clock
- Configure PTP TimeReceiver Clock
- Example: Configure Ordinary TimeReceiver Clock With Unicast-Negotiation
- Example: Configure Ordinary TimeReceiver Clock Without Unicast-Negotiation
- PTP Transparent Clocks
- Configure PTP Transparent Clock
- play_arrow Precision Time Protocol Profiles
- play_arrow PHY Timestamping
- play_arrow Precision Time Protocol over Ethernet
- PTP over Ethernet Overview
- Guidelines to Configure PTP over Ethernet
- Configure PTP Dynamic Ports for Ethernet Encapsulation
- Configure PTP Multicast TimeTransmitter and TimeReceiver Ports for Ethernet Encapsulation
- Example: Configure PTP over Ethernet for Multicast TimeTransmitter, TimeReceiver, and Dynamic Ports
- play_arrow Precision Time Protocol Additional Features
- Precision Time Protocol (PTP) over Link Aggregation Group (LAG)
- Precision Time Protocol (PTP) Trace Overview
- Line Card Redundancy for PTP
- Timing Defects and Event Management on Routing Platforms
- SNMP MIB for Timing on Routing Platforms
- PTP Passive Port Performance Monitoring on PTX10004 and PTX10008 Devices
-
- play_arrow Global Navigation Satellite System (GNSS)
- play_arrow GPS Systems on Routing Platforms
- play_arrow Integrated GNSS on Routing Platforms
- play_arrow GNSS Configuration for Routers Using External GNSS Receiver
- play_arrow Assisted Partial Timing Support (APTS) on Routing Platforms
-
- play_arrow Synchronous Ethernet
- play_arrow Synchronous Ethernet Overview
- play_arrow Synchronous Ethernet on 10-Gigabit Ethernet MIC
-
- play_arrow Clock Synchronization
- play_arrow Clock Synchronization Concepts
- play_arrow Clock Synchronization for ACX Series Routers
- play_arrow Clock Synchronization for MX Series Routers
- play_arrow Clock Synchronization for PTX Series Routers
- play_arrow Centralized Clocking
-
- play_arrow Hybrid Mode
- play_arrow Hybrid Mode Overview
- play_arrow Hybrid Mode and ESMC Quality-Level Mapping
- Configure Hybrid Mode and ESMC Quality-Level Mapping Overview
- Configure Hybrid Mode with Mapping of the PTP Clock Class to the ESMC Quality-Level
- Configure Hybrid Mode with a User-Defined Mapping of the PTP Clock Class to the ESMC Quality-Level
- Example: Configure Hybrid Mode and ESMC Quality-Level Mapping on ACX Series Router
- Example: Configure Hybrid Mode and ESMC Quality-Level Mapping on MX240 Router
-
- play_arrow Configuration Statements and Operational Commands
- play_arrow Appendix
NTP Authentication Keys
Time synchronization can be authenticated to ensure that the switch obtains its time services only from known sources. By default, network time synchronization is unauthenticated. The switch will synchronize to whatever system appears to have the most accurate time. We strongly encourage you to configure authentication of network time services.
To authenticate other time servers, include the trusted-key
statement at the
[edit system ntp]
hierarchy level. The trusted keys refer to the configured
key that is trusted and used by NTP for secure clock synchronization. Any configured key not
referenced in the trusted-key
is not qualified and is rejected by NTP. Only
time servers that transmit network time packets containing one of the specified key numbers
are eligible to be synchronized. Additionally, the key needs to match the value configured for
that key number. Other systems can synchronize to the local switch without being
authenticated.
[edit system ntp] trusted-key[ key-numbers ];
Each key can be any 32-bit unsigned integer except 0. Include the key option in the
peer, server, or broadcast
statements to transmit the
specified authentication key when transmitting packets. The key is necessary if the remote
system has authentication enabled so that it can synchronize to the local system.
To define the authentication keys, include the authentication-key
statement
at the [edit system ntp]
hierarchy level:
[edit system ntp] authentication-key key-number type type value password;
number is the key number, type is the authentication type (only Message Digest 5 [MD5], SHA1, and SHA256 are supported), and password is the password for this key. The key number, type, and password must match on all systems using that particular key for authentication. There must be no space in the password for configuring the Network Time Protocol (NTP) authentication-key.
EX4300, EX4600, and related non-MP devices such as QFX5100 (EX and QFX models that run BSD6) support only MD5 authentication for NTP and do not support SHA-1 and SHA-256 authentication types.