- play_arrow Configuring Dynamic VLANs for Subscriber Access Networks
- play_arrow Dynamic VLAN Overview
- Subscriber Management VLAN Architecture Overview
- Dynamic 802.1Q VLAN Overview
- Static Subscriber Interfaces and VLAN Overview
- Pseudowire Termination: Explicit Notifications for Pseudowire Down Status
- Configuring an Access Pseudowire That Terminates into VRF on the Service Node
- Configuring an Access Pseudowire That Terminates into a VPLS Routing Instance
- play_arrow Configuring Dynamic Profiles and Interfaces Used to Create Dynamic VLANs
- Configuring a Dynamic Profile Used to Create Single-Tag VLANs
- Configuring an Interface to Use the Dynamic Profile Configured to Create Single-Tag VLANs
- Configuring a Dynamic Profile Used to Create Stacked VLANs
- Configuring an Interface to Use the Dynamic Profile Configured to Create Stacked VLANs
- Configuring Interfaces to Support Both Single and Stacked VLANs
- Overriding the Dynamic Profile Used for an Individual VLAN
- Configuring a VLAN Dynamic Profile That Associates VLANs with Separate Routing Instances
- Automatically Removing VLANs with No Subscribers
- Verifying and Managing Dynamic VLAN Configuration
- play_arrow Configuring Subscriber Authentication for Dynamic VLANs
- Configuring an Authentication Password for VLAN or Stacked VLAN Ranges
- Configuring Dynamic Authentication for VLAN Interfaces
- Subscriber Packet Type Authentication Triggers for Dynamic VLANs
- Configuring Subscriber Packet Types to Trigger VLAN Authentication
- Configuring VLAN Interface Username Information for AAA Authentication
- Using DHCP Option 82 Suboptions in Authentication Usernames for Autosense VLANs
- Using DHCP Option 18 and Option 37 in Authentication Usernames for DHCPv6 Autosense VLANs
- play_arrow Configuring VLANs for Households or Individual Subscribers Using ACI-Based Dynamic VLANs
- Agent Circuit Identifier-Based Dynamic VLANs Overview
- Configuring Dynamic VLANs Based on Agent Circuit Identifier Information
- Defining ACI Interface Sets
- Configuring Dynamic Underlying VLAN Interfaces to Use Agent Circuit Identifier Information
- Configuring Static Underlying VLAN Interfaces to Use Agent Circuit Identifier Information
- Configuring Dynamic VLAN Subscriber Interfaces Based on Agent Circuit Identifier Information
- Verifying and Managing Agent Circuit Identifier-Based Dynamic VLAN Configuration
- Clearing Agent Circuit Identifier Interface Sets
- play_arrow Configuring VLANs for Households or Individual Subscribers Using Access-Line-Identifier Dynamic VLANs
- Access-Line-Identifier-Based Dynamic VLANs Overview
- Configuring Dynamic VLANs Based on Access-Line Identifiers
- Defining Access-Line-Identifier Interface Sets
- Configuring Dynamic Underlying VLAN Interfaces to Use Access-Line Identifiers
- Configuring Static Underlying VLAN Interfaces to Use Access-Line Identifiers
- Configuring Dynamic VLAN Subscriber Interfaces Based on Access-Line Identifiers
- Verifying and Managing Configurations for Dynamic VLANs Based on Access-Line Identifiers
- Clearing Access-Line-Identifier Interface Sets
- play_arrow High Availability for Service VLANs
-
- play_arrow Configuring PPPoE Subscriber Interfaces
- play_arrow Configuring Dynamic PPPoE Subscriber Interfaces
- Subscriber Interfaces and PPPoE Overview
- Dynamic PPPoE Subscriber Interfaces over Static Underlying Interfaces Overview
- Configuring Dynamic PPPoE Subscriber Interfaces
- Configuring a PPPoE Dynamic Profile
- Configuring an Underlying Interface for Dynamic PPPoE Subscriber Interfaces
- Configuring the PPPoE Family for an Underlying Interface
- Ignoring DSL Forum VSAs from Directly Connected Devices
- Example: Configuring a Dynamic PPPoE Subscriber Interface on a Static Gigabit Ethernet VLAN Interface
- play_arrow Configuring PPPoE Subscriber Interfaces over Aggregated Ethernet Examples
- Example: Configuring a Static PPPoE Subscriber Interface on a Static Underlying VLAN Demux Interface over Aggregated Ethernet
- Example: Configuring a Dynamic PPPoE Subscriber Interface on a Static Underlying VLAN Demux Interface over Aggregated Ethernet
- Example: Configuring a Dynamic PPPoE Subscriber Interface on a Dynamic Underlying VLAN Demux Interface over Aggregated Ethernet
- play_arrow Configuring PPPoE Session Limits
- play_arrow Configuring PPPoE Subscriber Session Lockout
- play_arrow Configuring MTU and MRU for PPP Subscribers
- play_arrow Configuring PPPoE Service Name Tables
- Understanding PPPoE Service Name Tables
- Evaluation Order for Matching Client Information in PPPoE Service Name Tables
- Benefits of Configuring PPPoE Service Name Tables
- Creating a Service Name Table
- Configuring PPPoE Service Name Tables
- Assigning a Service Name Table to a PPPoE Underlying Interface
- Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag
- Configuring the Action Taken for the Any Service
- Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name
- Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client
- Example: Configuring a PPPoE Service Name Table
- Example: Configuring a PPPoE Service Name Table for Dynamic Subscriber Interface Creation
- Troubleshooting PPPoE Service Name Tables
- play_arrow Changing the Behavior of PPPoE Control Packets
- play_arrow Monitoring and Managing Dynamic PPPoE for Subscriber Access
-
- play_arrow Configuring MLPPP for Subscriber Access
- play_arrow MLPPP Support for LNS and PPPoE Subscribers Overview
- MLPPP Overview
- MLPPP Support for LNS and PPPoE Subscribers Overview
- Supported Features for MLPPP LNS and PPPoE Subscribers on the MX Series
- Mixed Mode Support for MLPPP and PPP Subscribers Overview
- Understanding DVLAN (Single/Dual tag) for Subscriber Services Scaling (Junos Evolved for ACX7100-48L Devices)
- play_arrow Configuring MLPPP Link Fragmentation and Interleaving
- play_arrow Configuring Inline Service Interfaces for LNS and PPPoE Subscribers
- play_arrow Configuring L2TP Access Client for MLPPP Subscribers
- play_arrow Configuring Static MLPPP Subscribers for MX Series
- play_arrow Configuring Dynamic MLPPP Subscribers for MX Series
- play_arrow Configuring Dynamic PPP Subscriber Services
- Dynamic PPP Subscriber Services for Static MLPPP Interfaces Overview
- Hardware Requirements for PPP Subscriber Services on Non-Ethernet Interfaces
- Configuring PPP Subscriber Services for MLPPP Bundles
- Enabling PPP Subscriber Services for Static Non-Ethernet Interfaces
- Attaching Dynamic Profiles to MLPPP Bundles
- Example: Minimum MLPPP Dynamic Profile
- Example: Configuring CoS on Static LSQ MLPPP Bundle Interfaces
- play_arrow Monitoring and Managing MLPPP for Subscriber Access
-
- play_arrow Configuring ATM for Subscriber Access
- play_arrow Configuring ATM to Deliver Subscriber-Based Services
- play_arrow Configuring PPPoE Subscriber Interfaces Over ATM
- play_arrow Configuring ATM Virtual Path Shaping on ATM MICs with SFP
- play_arrow Configuring Static Subscriber Interfaces over ATM
- play_arrow Verifying and Managing ATM Configurations
-
- play_arrow Troubleshooting
- play_arrow Contacting Juniper Networks Technical Support
- play_arrow Knowledge Base
-
- play_arrow Configuration Statements and Operational Commands
Example: Configuring a Static Subscriber Interface on a VLAN Interface over Aggregated Ethernet
This example shows how you can configure a subscriber interface using a static virtual LAN (VLAN) stacked on a two-link aggregated Ethernet logical interface. In this example, the underlying aggregated Ethernet logical interface is configured for one-to-one active/backup redundancy at the DPC level, and per-subscriber static hierarchical class-of-service (CoS) is configured by applying CoS parameters at the aggregated Ethernet logical interface.
Define the number of aggregated Ethernet interfaces on the router.
In this example, only one aggregated Ethernet logical interface is configured on the router.
content_copy zoom_out_map[edit] chassis { aggregated-devices { ethernet { device-count 1; } } }
Configure
ae0
, a two-link aggregated Ethernet logical interface to serve as the underlying interface for the static VLAN subscriber interface. In order to support hierarchical CoS, the physical ports must be on EQ DPCs in MX Series routers.In this example, the LAG bundle is configured for one-to-one active/backup link redundancy. To support link redundancy at the DPC level, the LAG bundle attaches ports from two different EQ DPCs.
content_copy zoom_out_map[edit] interfaces { ge-5/0/3 { gigether-options { 802.3ad { ae0; primary; } } ge-5/1/2 { gigether-options { 802.3ad { ae0; backup; } } } } }
Configure
ae0
to serve as the underlying interface for the static VLAN interface.content_copy zoom_out_map[edit] interfaces { ae0 { hierarchical-scheduler; aggregated-ether-options { link-protection; minimum-links 1; link-speed 1g; lacp { active; } } } }
Configure static traffic-shaping and scheduling parameters.
content_copy zoom_out_map[edit] class-of-service { forwarding-classes { # Associate queue numbers with class names queue 0 be; queue 1 e; queue 2 af; queue 3 nc; } schedulers { # Define output queue properties scheduler_be { transmit-rate percent 30; buffer-size percent 30; } scheduler_ef { transmit-rate percent 40; buffer-size percent 40; } scheduler_af { transmit-rate percent 25; buffer-size percent 25; } scheduler_nc { transmit-rate percent 5; buffer-size percent 5; } } scheduler-maps { # Associate queues with schedulers smap_2 { forwarding-class be scheduler_be; forwarding-class ef scheduler_ef; forwarding-class-af scheduler_af; forwarding-class-nc scheduler_nc; } } }
Attach static CoS to the physical and logical interfaces of the aggregated Ethernet interface.
In this example, three traffic control profiles are defined, but only two profiles are applied to the static VLAN subscriber interface over aggregated Ethernet:
The
tcp_for_ae_device_pir_500m
profile defines a shaping rate, and it is applied to both of the underlying physical interfaces (ge-5/0/3
andge-5/1/2
).The
tcp-for-ae_smap_video_pir_20m_delay_30m
profile defines a scheduler map, a shaping rate, and a delay buffer rate, and it is applied to one of the logical interfaces on the aggregated Ethernet bundle (ae0.0
).
content_copy zoom_out_map[edit] class-of-service { traffic-control-profiles { # Configure traffic shaping and scheduling profiles tcp_for_ae_device_pir_500m { shaping-rate 20m; } tcp_for_ae_smap_video_pir_20m_delay_30m { scheduler-map smap_video; shaping-rate 20m; delay-buffer-rate 30m; } tcp_for_ae_smap_video_cir_50m_delay_75m { scheduler-map smap_video; guaranteed-rate 50m; delay-buffer-rate 75m; } } interfaces { # Apply two traffic-control profiles to the LAG ae0 { # Two underlying physical interfaces on separate EQ DPCs output-traffic-control-profile tcp-for-ae_device_pir_500m; unit 0 { # One of the two logical interfaces on ’ae0’ output-traffic-control-profile tcp-for-ae_smap_video_pir_20m_delay_30m; } } } }