- play_arrow Configuring DHCP Subscriber Interfaces
- play_arrow VLAN and Demux Subscriber Interfaces Overview
- play_arrow Configuring Sets of Demux Interfaces to Provide Services to a Group of Subscribers
- play_arrow Configuring Dynamic Demux Interfaces That are Created by DHCP
- play_arrow Configuring DHCP Subscriber Interfaces over Aggregated Ethernet
- Static and Dynamic VLAN Subscriber Interfaces over Aggregated Ethernet Overview
- Static or Dynamic Demux Subscriber Interfaces over Aggregated Ethernet Overview
- Configuring a Static or Dynamic VLAN Subscriber Interface over Aggregated Ethernet
- Configuring a Static or Dynamic IP Demux Subscriber Interface over Aggregated Ethernet
- Configuring a Static or Dynamic VLAN Demux Subscriber Interface over Aggregated Ethernet
- Example: Configuring a Static Subscriber Interface on a VLAN Interface over Aggregated Ethernet
- Example: Configuring a Static Subscriber Interface on an IP Demux Interface over Aggregated Ethernet
- Example: Configuring IPv4 Static VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- Example: Configuring IPv4 Dynamic VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- Example: Configuring IPv6 Dynamic VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- Example: Configuring IPv4 Dynamic Stacked VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- play_arrow Using Dynamic Profiles to Apply Services to DHCP Subscriber Interfaces
- play_arrow Configuring DHCP IP Demux and PPPoE Demux Interfaces Over the Same VLAN
- play_arrow Providing Security for DHCP Interfaces Using MAC Address Validation
- play_arrow RADIUS-Sourced Weights for Targeted Distribution
- play_arrow Verifying Configuration and Status of Dynamic Subscribers
-
- play_arrow Configuring PPPoE Subscriber Interfaces
- play_arrow Configuring Dynamic PPPoE Subscriber Interfaces
- Subscriber Interfaces and PPPoE Overview
- Dynamic PPPoE Subscriber Interfaces over Static Underlying Interfaces Overview
- Configuring Dynamic PPPoE Subscriber Interfaces
- Configuring a PPPoE Dynamic Profile
- Configuring an Underlying Interface for Dynamic PPPoE Subscriber Interfaces
- Configuring the PPPoE Family for an Underlying Interface
- Ignoring DSL Forum VSAs from Directly Connected Devices
- Example: Configuring a Dynamic PPPoE Subscriber Interface on a Static Gigabit Ethernet VLAN Interface
- play_arrow Configuring PPPoE Subscriber Interfaces over Aggregated Ethernet Examples
- Example: Configuring a Static PPPoE Subscriber Interface on a Static Underlying VLAN Demux Interface over Aggregated Ethernet
- Example: Configuring a Dynamic PPPoE Subscriber Interface on a Static Underlying VLAN Demux Interface over Aggregated Ethernet
- Example: Configuring a Dynamic PPPoE Subscriber Interface on a Dynamic Underlying VLAN Demux Interface over Aggregated Ethernet
- play_arrow Configuring PPPoE Session Limits
- play_arrow Configuring PPPoE Subscriber Session Lockout
- play_arrow Configuring MTU and MRU for PPP Subscribers
- play_arrow Configuring PPPoE Service Name Tables
- Understanding PPPoE Service Name Tables
- Evaluation Order for Matching Client Information in PPPoE Service Name Tables
- Benefits of Configuring PPPoE Service Name Tables
- Creating a Service Name Table
- Configuring PPPoE Service Name Tables
- Assigning a Service Name Table to a PPPoE Underlying Interface
- Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag
- Configuring the Action Taken for the Any Service
- Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name
- Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client
- Example: Configuring a PPPoE Service Name Table
- Example: Configuring a PPPoE Service Name Table for Dynamic Subscriber Interface Creation
- Troubleshooting PPPoE Service Name Tables
- play_arrow Changing the Behavior of PPPoE Control Packets
- play_arrow Monitoring and Managing Dynamic PPPoE for Subscriber Access
-
- play_arrow Configuring MLPPP for Subscriber Access
- play_arrow MLPPP Support for LNS and PPPoE Subscribers Overview
- MLPPP Overview
- MLPPP Support for LNS and PPPoE Subscribers Overview
- Supported Features for MLPPP LNS and PPPoE Subscribers on the MX Series
- Mixed Mode Support for MLPPP and PPP Subscribers Overview
- Understanding DVLAN (Single/Dual tag) for Subscriber Services Scaling (Junos Evolved for ACX7100-48L Devices)
- play_arrow Configuring MLPPP Link Fragmentation and Interleaving
- play_arrow Configuring Inline Service Interfaces for LNS and PPPoE Subscribers
- play_arrow Configuring L2TP Access Client for MLPPP Subscribers
- play_arrow Configuring Static MLPPP Subscribers for MX Series
- play_arrow Configuring Dynamic MLPPP Subscribers for MX Series
- play_arrow Configuring Dynamic PPP Subscriber Services
- Dynamic PPP Subscriber Services for Static MLPPP Interfaces Overview
- Hardware Requirements for PPP Subscriber Services on Non-Ethernet Interfaces
- Configuring PPP Subscriber Services for MLPPP Bundles
- Enabling PPP Subscriber Services for Static Non-Ethernet Interfaces
- Attaching Dynamic Profiles to MLPPP Bundles
- Example: Minimum MLPPP Dynamic Profile
- Example: Configuring CoS on Static LSQ MLPPP Bundle Interfaces
- play_arrow Monitoring and Managing MLPPP for Subscriber Access
-
- play_arrow Configuring ATM for Subscriber Access
- play_arrow Configuring ATM to Deliver Subscriber-Based Services
- play_arrow Configuring PPPoE Subscriber Interfaces Over ATM
- play_arrow Configuring ATM Virtual Path Shaping on ATM MICs with SFP
- play_arrow Configuring Static Subscriber Interfaces over ATM
- play_arrow Verifying and Managing ATM Configurations
-
- play_arrow Troubleshooting
- play_arrow Contacting Juniper Networks Technical Support
- play_arrow Knowledge Base
-
- play_arrow Configuration Statements and Operational Commands
Configuring Interfaces to Support Both Single and Stacked VLANs
Starting in Junos OS Release 14.1, you can configure VLANs to support simultaneous transmission of 802.1Q VLAN single-tag and stacked frames on logical interfaces on the same Ethernet port, and on pseudowire logical interfaces.
Junos VLAN IDs for single-tag VLANs are equivalent to the outer tags used for stacked (dual-tag) VLANs. When configuring mixed (flexible) VLANs, any overlap on single-tag VLAN IDs and stacked VLAN outer tag values is supported only for dynamic VLANs on MPC line cards. When configuring mixed (flexible) VLANS on DPCE line cards, overlapping single-tag VLAN IDs and stacked VLAN outer tag values is not supported. This means that a dynamically created single-tagged VLAN interface prevents any overlapping stacked VLAN interfaces from being created or a dynamically created stacked VLAN interface prevents any overlapping single-tagged VLAN interfaces from being created.
For information about the maximum number of dynamic profiles, VLAN ranges, and stacked VLAN ranges for dynamic mixed VLAN configurations, see Dynamic 802.1Q VLAN Overview.
To configure both VLAN and stacked VLAN ranges:
Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to determine if a feature is supported on your platform.