- play_arrow Configuring Dynamic VLANs for Subscriber Access Networks
- play_arrow Dynamic VLAN Overview
- Subscriber Management VLAN Architecture Overview
- Dynamic 802.1Q VLAN Overview
- Static Subscriber Interfaces and VLAN Overview
- Pseudowire Termination: Explicit Notifications for Pseudowire Down Status
- Configuring an Access Pseudowire That Terminates into VRF on the Service Node
- Configuring an Access Pseudowire That Terminates into a VPLS Routing Instance
- play_arrow Configuring Dynamic Profiles and Interfaces Used to Create Dynamic VLANs
- Configuring a Dynamic Profile Used to Create Single-Tag VLANs
- Configuring an Interface to Use the Dynamic Profile Configured to Create Single-Tag VLANs
- Configuring a Dynamic Profile Used to Create Stacked VLANs
- Configuring an Interface to Use the Dynamic Profile Configured to Create Stacked VLANs
- Configuring Interfaces to Support Both Single and Stacked VLANs
- Overriding the Dynamic Profile Used for an Individual VLAN
- Configuring a VLAN Dynamic Profile That Associates VLANs with Separate Routing Instances
- Automatically Removing VLANs with No Subscribers
- Verifying and Managing Dynamic VLAN Configuration
- play_arrow Configuring Subscriber Authentication for Dynamic VLANs
- Configuring an Authentication Password for VLAN or Stacked VLAN Ranges
- Configuring Dynamic Authentication for VLAN Interfaces
- Subscriber Packet Type Authentication Triggers for Dynamic VLANs
- Configuring Subscriber Packet Types to Trigger VLAN Authentication
- Configuring VLAN Interface Username Information for AAA Authentication
- Using DHCP Option 82 Suboptions in Authentication Usernames for Autosense VLANs
- Using DHCP Option 18 and Option 37 in Authentication Usernames for DHCPv6 Autosense VLANs
- play_arrow Configuring VLANs for Households or Individual Subscribers Using ACI-Based Dynamic VLANs
- Agent Circuit Identifier-Based Dynamic VLANs Overview
- Configuring Dynamic VLANs Based on Agent Circuit Identifier Information
- Defining ACI Interface Sets
- Configuring Dynamic Underlying VLAN Interfaces to Use Agent Circuit Identifier Information
- Configuring Static Underlying VLAN Interfaces to Use Agent Circuit Identifier Information
- Configuring Dynamic VLAN Subscriber Interfaces Based on Agent Circuit Identifier Information
- Verifying and Managing Agent Circuit Identifier-Based Dynamic VLAN Configuration
- Clearing Agent Circuit Identifier Interface Sets
- play_arrow Configuring VLANs for Households or Individual Subscribers Using Access-Line-Identifier Dynamic VLANs
- Access-Line-Identifier-Based Dynamic VLANs Overview
- Configuring Dynamic VLANs Based on Access-Line Identifiers
- Defining Access-Line-Identifier Interface Sets
- Configuring Dynamic Underlying VLAN Interfaces to Use Access-Line Identifiers
- Configuring Static Underlying VLAN Interfaces to Use Access-Line Identifiers
- Configuring Dynamic VLAN Subscriber Interfaces Based on Access-Line Identifiers
- Verifying and Managing Configurations for Dynamic VLANs Based on Access-Line Identifiers
- Clearing Access-Line-Identifier Interface Sets
- play_arrow High Availability for Service VLANs
-
- play_arrow Configuring DHCP Subscriber Interfaces
- play_arrow VLAN and Demux Subscriber Interfaces Overview
- play_arrow Configuring Sets of Demux Interfaces to Provide Services to a Group of Subscribers
- play_arrow Configuring Dynamic Demux Interfaces That are Created by DHCP
- play_arrow Configuring DHCP Subscriber Interfaces over Aggregated Ethernet
- Static and Dynamic VLAN Subscriber Interfaces over Aggregated Ethernet Overview
- Static or Dynamic Demux Subscriber Interfaces over Aggregated Ethernet Overview
- Configuring a Static or Dynamic VLAN Subscriber Interface over Aggregated Ethernet
- Configuring a Static or Dynamic IP Demux Subscriber Interface over Aggregated Ethernet
- Configuring a Static or Dynamic VLAN Demux Subscriber Interface over Aggregated Ethernet
- Example: Configuring a Static Subscriber Interface on a VLAN Interface over Aggregated Ethernet
- Example: Configuring a Static Subscriber Interface on an IP Demux Interface over Aggregated Ethernet
- Example: Configuring IPv4 Static VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- Example: Configuring IPv4 Dynamic VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- Example: Configuring IPv6 Dynamic VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- Example: Configuring IPv4 Dynamic Stacked VLAN Demux Interfaces over an Aggregated Ethernet Underlying Interface with DHCP Local Server
- play_arrow Using Dynamic Profiles to Apply Services to DHCP Subscriber Interfaces
- play_arrow Configuring DHCP IP Demux and PPPoE Demux Interfaces Over the Same VLAN
- play_arrow Providing Security for DHCP Interfaces Using MAC Address Validation
- play_arrow RADIUS-Sourced Weights for Targeted Distribution
- play_arrow Verifying Configuration and Status of Dynamic Subscribers
-
- play_arrow Configuring MLPPP for Subscriber Access
- play_arrow MLPPP Support for LNS and PPPoE Subscribers Overview
- MLPPP Overview
- MLPPP Support for LNS and PPPoE Subscribers Overview
- Supported Features for MLPPP LNS and PPPoE Subscribers on the MX Series
- Mixed Mode Support for MLPPP and PPP Subscribers Overview
- Understanding DVLAN (Single/Dual tag) for Subscriber Services Scaling (Junos Evolved for ACX7100-48L Devices)
- play_arrow Configuring MLPPP Link Fragmentation and Interleaving
- play_arrow Configuring Inline Service Interfaces for LNS and PPPoE Subscribers
- play_arrow Configuring L2TP Access Client for MLPPP Subscribers
- play_arrow Configuring Static MLPPP Subscribers for MX Series
- play_arrow Configuring Dynamic MLPPP Subscribers for MX Series
- play_arrow Configuring Dynamic PPP Subscriber Services
- Dynamic PPP Subscriber Services for Static MLPPP Interfaces Overview
- Hardware Requirements for PPP Subscriber Services on Non-Ethernet Interfaces
- Configuring PPP Subscriber Services for MLPPP Bundles
- Enabling PPP Subscriber Services for Static Non-Ethernet Interfaces
- Attaching Dynamic Profiles to MLPPP Bundles
- Example: Minimum MLPPP Dynamic Profile
- Example: Configuring CoS on Static LSQ MLPPP Bundle Interfaces
- play_arrow Monitoring and Managing MLPPP for Subscriber Access
-
- play_arrow Configuring ATM for Subscriber Access
- play_arrow Configuring ATM to Deliver Subscriber-Based Services
- play_arrow Configuring PPPoE Subscriber Interfaces Over ATM
- play_arrow Configuring ATM Virtual Path Shaping on ATM MICs with SFP
- play_arrow Configuring Static Subscriber Interfaces over ATM
- play_arrow Verifying and Managing ATM Configurations
-
- play_arrow Troubleshooting
- play_arrow Contacting Juniper Networks Technical Support
- play_arrow Knowledge Base
-
- play_arrow Configuration Statements and Operational Commands
Assigning a Service Name Table to a PPPoE Underlying Interface
You must assign the PPPoE service name table to a PPPoE underlying interface.
Before you begin:
Specify PPPoE as the encapsulation method on the underlying interface.
See Setting the Appropriate Encapsulation on the PPPoE Interface in Configuring PPPoE.
To assign a service name table to a PPPoE underlying interface:
Specify the table name:
content_copy zoom_out_map[edit interfaces interface-name unit logical-unit-number] user@host# set pppoe-underlying-options service-name-table table1