- play_arrow Understanding Layer 2 Networking
- play_arrow Configuring MAC Addresses
- play_arrow Configuring MAC Learning
- play_arrow Configuring MAC Accounting
- play_arrow Configuring MAC Notification
- play_arrow Configuring MAC Table Aging
- play_arrow Configuring Learning and Forwarding
- play_arrow Configuring Bridging and VLANs
- play_arrow Configuring Static ARP Table Entries
- play_arrow Configuring Restricted and Unrestricted Proxy ARP
- play_arrow Configuring Gratuitous ARP
- play_arrow Adjusting the ARP Aging Timer
- play_arrow Configuring Tagged VLANs
- play_arrow Stacking and Rewriting Gigabit Ethernet VLAN Tags
- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview
- Stacking and Rewriting Gigabit Ethernet VLAN Tags
- Configuring Frames with Particular TPIDs to Be Processed as Tagged Frames
- Configuring Tag Protocol IDs (TPIDs) on PTX Series Packet Transport Routers
- Configuring Stacked VLAN Tagging
- Configuring Dual VLAN Tags
- Configuring Inner and Outer TPIDs and VLAN IDs
- Stacking a VLAN Tag
- Stacking Two VLAN Tags
- Removing a VLAN Tag
- Removing the Outer and Inner VLAN Tags
- Removing the Outer VLAN Tag and Rewriting the Inner VLAN Tag
- Rewriting the VLAN Tag on Tagged Frames
- Rewriting a VLAN Tag on Untagged Frames
- Rewriting a VLAN Tag and Adding a New Tag
- Rewriting the Inner and Outer VLAN Tags
- Examples: Stacking and Rewriting Gigabit Ethernet IQ VLAN Tags
- Understanding Transparent Tag Operations and IEEE 802.1p Inheritance
- Understanding swap-by-poppush
- Configuring IEEE 802.1p Inheritance push and swap from the Transparent Tag
- play_arrow Configuring Private VLANs
- Private VLANs
- Understanding Private VLANs
- Bridge Domains Setup in PVLANs on MX Series Routers
- Bridging Functions With PVLANs
- Flow of Frames on PVLAN Ports Overview
- Guidelines for Configuring PVLANs on MX Series Routers
- Configuring PVLANs on MX Series Routers in Enhanced LAN Mode
- Example: Configuring PVLANs with Secondary VLAN Trunk Ports and Promiscuous Access Ports on a QFX Series Switch
- IRB Interfaces in Private VLANs on MX Series Routers
- Guidelines for Configuring IRB Interfaces in PVLANs on MX Series Routers
- Forwarding of Packets Using IRB Interfaces in PVLANs
- Configuring IRB Interfaces in PVLAN Bridge Domains on MX Series Routers in Enhanced LAN Mode
- Example: Configuring an IRB Interface in a Private VLAN on a Single MX Series Router
- play_arrow Configuring Layer 2 Bridging Interfaces
- play_arrow Configuring Layer 2 Virtual Switch Instances
- play_arrow Configuring Link Layer Discovery Protocol
- play_arrow Configuring Layer 2 Protocol Tunneling
- play_arrow Configuring Virtual Routing Instances
- play_arrow Configuring Layer 3 Logical Interfaces
- play_arrow Configuring Routed VLAN Interfaces
- play_arrow Configuring Integrated Routing and Bridging
- play_arrow Configuring VLANS and VPLS Routing Instances
- play_arrow Configuring Multiple VLAN Registration Protocol (MVRP)
- play_arrow Configuring Ethernet Ring Protection Switching
- play_arrow Configuring Q-in-Q Tunneling and VLAN Translation
- play_arrow Configuring Redundant Trunk Groups
- play_arrow Configuring Proxy ARP
- play_arrow Configuring Layer 2 Interfaces on Security Devices
- play_arrow Configuring Security Zones and Security Policies on Security Devices
- play_arrow Configuring Ethernet Port Switching Modes on Security Devices
- play_arrow Configuring Ethernet Port VLANs in Switching Mode on Security Devices
- play_arrow Configuring Secure Wire on Security Devices
- play_arrow Configuring Reflective Relay on Switches
- play_arrow Configuring Edge Virtual Bridging
- play_arrow Troubleshooting Ethernet Switching
- play_arrow Configuration Statements and Operational Commands
Specifying the Interface to Handle Traffic for a CCC
To configure the VLAN-bundled logical interface as the interface to handle traffic for a circuit connected to the Layer 2 VPN routing instance, include the following statements:
protocols { l2vpn { (control-word | no-control-word); encapsulation-type (ethernet | ethernet-vlan); site site-name { site-identifier identifier; interface logical-interface-name { # VLAN-bundled logical interface . . . interface-options . . . } } } }
You can include the statements at the same hierarchy
level at which you include the instance-type l2vpn
and interface logical-interface-name
statements:
[edit routing-instances routing-instance-name]
[edit logical-systems logical-system-name routing-instances routing-instance-name]
To enable a Layer 2 VPN routing instance on a PE router, include
the l2vpn
statement. For more information, see the Junos OS VPNs Library for Routing Devices.
The encapsulation-type
statement specifies the Layer
2 protocol used for traffic from the customer edge (CE) router. If
the Layer 2 VPN routing instance is being connected to a single-tag
Layer 2 circuit, specify ethernet
as the encapsulation
type. If the Layer 2 VPN routing instance is being connected to a
dual-tag Layer 2 circuit, specify ethernet-vlan
as the
encapsulation type.
To specify the interface to handle traffic for a circuit connected
to the Layer 2 VPN routing instance, include the interface
statement and specify the VLAN-bundled logical interface.