- play_arrow Common Configuration for All VPNs
- play_arrow VPNs Overview
- play_arrow Assigning Routing Instances to VPNs
- play_arrow Distributing Routes in VPNs
- play_arrow Distributing VPN Routes with Target Filtering
- Configuring BGP Route Target Filtering for VPNs
- Example: BGP Route Target Filtering for VPNs
- Example: Configuring BGP Route Target Filtering for VPNs
- Configuring Static Route Target Filtering for VPNs
- Understanding Proxy BGP Route Target Filtering for VPNs
- Example: Configuring Proxy BGP Route Target Filtering for VPNs
- Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs
- Reducing Network Resource Use with Static Route Target Filtering for VPNs
- play_arrow Configuring Forwarding Options for VPNs
- play_arrow Configuring Graceful Restart for VPNs
- play_arrow Configuring Class of Service for VPNs
- play_arrow Pinging VPNs
-
- play_arrow Common Configuration for Layer 2 VPNs and VPLS
- play_arrow Overview
- play_arrow Layer 2 VPNs Configuration Overview
- play_arrow Configuring Layer 2 Interfaces
- play_arrow Configuring Path Selection for Layer 2 VPNs and VPLS
- play_arrow Creating Backup Connections with Redundant Pseudowires
- play_arrow Configuring Class of Service for Layer 2 VPNs
- play_arrow Monitoring Layer 2 VPNs
- Configuring BFD for Layer 2 VPN and VPLS
- BFD Support for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Configuring BFD for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Connectivity Fault Management Support for EVPN and Layer 2 VPN Overview
- Configure a MEP to Generate and Respond to CFM Protocol Messages
-
- play_arrow Configuring Group VPNs
- play_arrow Configuring Public Key Infrastructure
- play_arrow Configuring Digital Certificate Validation
- play_arrow Configuring a Device for Certificate Chains
- play_arrow Managing Certificate Revocation
-
- play_arrow Configuring Layer 2 Circuits
- play_arrow Overview
- play_arrow Layer 2 Circuits Configuration Overview
- play_arrow Configuring Class of Service with Layer 2 Circuits
- play_arrow Configuring Pseudowire Redundancy for Layer 2 Circuits
- play_arrow Configuring Load Balancing for Layer 2 Circuits
- play_arrow Configuring Protection Features for Layer 2 Circuits
- Egress Protection LSPs for Layer 2 Circuits
- Configuring Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Example: Configuring an Egress Protection LSP for a Layer 2 Circuit
- Example: Configuring Layer 2 Circuit Protect Interfaces
- Example: Configuring Layer 2 Circuit Switching Protection
- play_arrow Monitoring Layer 2 Circuits with BFD
- play_arrow Troubleshooting Layer 2 Circuits
-
- play_arrow Configuring VPWS VPNs
- play_arrow Overview
- play_arrow Configuring VPWS VPNs
- Understanding FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring MPLS Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Understanding Multisegment Pseudowire for FEC 129
- Example: Configuring a Multisegment Pseudowire
- Configuring the FAT Flow Label for FEC 128 VPWS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPWS Pseudowires for Load-Balancing MPLS Traffic
-
- play_arrow Configuring VPLS
- play_arrow Overview
- play_arrow VPLS Configuration Overview
- play_arrow Configuring Signaling Protocols for VPLS
- VPLS Routing and Virtual Ports
- BGP Signaling for VPLS PE Routers Overview
- Control Word for BGP VPLS Overview
- Configuring a Control Word for BGP VPLS
- BGP Route Reflectors for VPLS
- Interoperability Between BGP Signaling and LDP Signaling in VPLS
- Configuring Interoperability Between BGP Signaling and LDP Signaling in VPLS
- Example: VPLS Configuration (BGP Signaling)
- Example: VPLS Configuration (BGP and LDP Interworking)
- play_arrow Assigning Routing Instances to VPLS
- Configuring VPLS Routing Instances
- Configuring a VPLS Routing Instance
- Support of Inner VLAN List and Inner VLAN Range for Qualified BUM Pruning on a Dual-Tagged Interface for a VPLS Routing Instance Overview
- Configuring Qualified BUM Pruning for a Dual-Tagged Interface with Inner VLAN list and InnerVLAN range for a VPLS Routing Instance
- Configuring a Layer 2 Control Protocol Routing Instance
- PE Router Mesh Groups for VPLS Routing Instances
- Configuring VPLS Fast Reroute Priority
- Specifying the VT Interfaces Used by VPLS Routing Instances
- Understanding PIM Snooping for VPLS
- Example: Configuring PIM Snooping for VPLS
- VPLS Label Blocks Operation
- Configuring the Label Block Size for VPLS
- Example: Building a VPLS From Router 1 to Router 3 to Validate Label Blocks
- play_arrow Associating Interfaces with VPLS
- play_arrow Configuring Pseudowires
- Configuring Static Pseudowires for VPLS
- VPLS Path Selection Process for PE Routers
- BGP and VPLS Path Selection for Multihomed PE Routers
- Dynamic Profiles for VPLS Pseudowires
- Use Cases for Dynamic Profiles for VPLS Pseudowires
- Example: Configuring VPLS Pseudowires with Dynamic Profiles—Basic Solutions
- Example: Configuring VPLS Pseudowires with Dynamic Profiles—Complex Solutions
- Configuring the FAT Flow Label for FEC 128 VPLS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPLS Pseudowires for Load-Balancing MPLS Traffic
- Example: Configuring H-VPLS BGP-Based and LDP-Based VPLS Interoperation
- Example: Configuring BGP-Based H-VPLS Using Different Mesh Groups for Each Spoke Router
- Example: Configuring LDP-Based H-VPLS Using a Single Mesh Group to Terminate the Layer 2 Circuits
- Example: Configuring H-VPLS With VLANs
- Example: Configuring H-VPLS Without VLANs
- Configure Hot-Standby Pseudowire Redundancy in H-VPLS
- Sample Scenario of H-VPLS on ACX Series Routers for IPTV Services
- play_arrow Configuring Multihoming
- VPLS Multihoming Overview
- Advantages of Using Autodiscovery for VPLS Multihoming
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring BGP Autodiscovery for LDP VPLS
- Example: Configuring BGP Autodiscovery for LDP VPLS with User-Defined Mesh Groups
- VPLS Multihoming Reactions to Network Failures
- Configuring VPLS Multihoming
- Example: VPLS Multihoming, Improved Convergence Time
- Example: Configuring VPLS Multihoming (FEC 129)
- Next-Generation VPLS for Multicast with Multihoming Overview
- Example: Next-Generation VPLS for Multicast with Multihoming
- play_arrow Configuring Point-to-Multipoint LSPs
- play_arrow Configuring Inter-AS VPLS and IRB VPLS
- play_arrow Configuring Load Balancing and Performance
- Configuring VPLS Load Balancing
- Configuring VPLS Load Balancing Based on IP and MPLS Information
- Configuring VPLS Load Balancing on MX Series 5G Universal Routing Platforms
- Example: Configuring Loop Prevention in VPLS Network Due to MAC Moves
- Understanding MAC Pinning
- Configuring MAC Pinning on Access Interfaces for Bridge Domains
- Configuring MAC Pinning on Trunk Interfaces for Bridge Domains
- Configuring MAC Pinning on Access Interfaces for Bridge Domains in a Virtual Switch
- Configuring MAC Pinning on Trunk Interfaces for Bridge Domains in a Virtual Switch
- Configuring MAC Pinning for All Pseudowires of the VPLS Routing Instance (LDP and BGP)
- Configuring MAC Pinning on VPLS CE Interface
- Configuring MAC Pinning for All Pseudowires of the VPLS Site in a BGP-Based VPLS Routing Instance
- Configuring MAC Pinning on All Pseudowires of a Specific Neighbor of LDP-Based VPLS Routing Instance
- Configuring MAC Pinning on Access Interfaces for Logical Systems
- Configuring MAC Pinning on Trunk Interfaces for Logical Systems
- Configuring MAC Pinning on Access Interfaces in Virtual Switches for Logical Systems
- Configuring MAC Pinning on Trunk Interfaces in Virtual Switches for Logical Systems
- Configuring MAC Pinning for All Pseudowires of the VPLS Routing Instance (LDP and BGP) for Logical Systems
- Configuring MAC Pinning on VPLS CE Interface for Logical Systems
- Configuring MAC Pinning for All Pseudowires of the VPLS Site in a BGP-Based VPLS Routing Instance for Logical Systems
- Configuring MAC Pinning on All Pseudowires of a Specific Neighbor of LDP-Based VPLS Routing Instance for Logical Systems
- Example: Prevention of Loops in Bridge Domains by Enabling the MAC Pinnning Feature on Access Interfaces
- Example: Prevention of Loops in Bridge Domains by Enabling the MAC Pinnning Feature on Trunk Interfaces
- Configuring Improved VPLS MAC Address Learning on T4000 Routers with Type 5 FPCs
- Understanding Qualified MAC Learning
- Qualified Learning VPLS Routing Instance Behavior
- Configuring Qualified MAC Learning
- play_arrow Configuring Class of Service and Firewall Filters in VPLS
- play_arrow Monitoring and Tracing VPLS
-
- play_arrow Configuration Statements and Operational Commands
ON THIS PAGE
Example: Interconnecting a Layer 2 Circuit with a Layer 2 Circuit
This example provides a step-by-step procedure and commands for configuring and verifying a Layer 2 circuit to a Layer 2 circuit interconnection. It contains the following sections:
Requirements
This example uses the following hardware and software components:
Junos OS Release 9.3 or later
2 MX Series routers
2 M Series routers
1 T Series router
1 EX Series router
Overview and Topology
The physical topology of a Layer 2 circuit to Layer 2 circuit interconnection is shown in Figure 1

The logical topology of a Layer 2 circuit to Layer 2 circuit interconnection is shown in Figure 2

Topology
Configuration
In any configuration session, it is good practice to verify
periodically that the configuration can be committed using the commit check
command.
In this example, the router being configured is identified using the following command prompts:
CE2
identifies the customer edge 2 (CE2) routerPE1
identifies the provider edge 1 (PE1) routerCE3
identifies the customer edge 3 (CE3) routerPE3
identifies the provider edge 3 (PE3) routerCE5
identifies the customer edge 5 (CE5) routerPE5
identifies the provider edge 5 (PE5) router
This example contains the following procedures:
- Configuring PE Router Customer-facing and Loopback Interfaces
- Configuring Core-facing Interfaces
- Configuring Protocols
- Configuring the Layer 2 Circuits
- Interconnecting the Layer 2 Circuits
- Verifying the Layer 2 Circuit to Layer 2 Circuit Interconnection
- Results
Configuring PE Router Customer-facing and Loopback Interfaces
Step-by-Step Procedure
To begin building the interconnection, configure the interfaces on the PE routers. If your network contains provider (P) routers, configure the interfaces on the P routers also. This example shows the configuration for Router PE1 and Router PE5.
On Router PE1, configure the
ge-1/0/0
interface encapsulation. To configure the interface encapsulation, include theencapsulation
statement and specify theethernet-ccc
option (vlan-ccc encapsulation is also supported). Configure thege-1/0/0.0
logical interface family for circuit cross-connect functionality. To configure the logical interface family, include thefamily
statement and specify theccc
option.content_copy zoom_out_map[edit interfaces] ge-1/0/0 { encapsulation ethernet-ccc; unit 0 { family ccc; } } lo0 { unit 0 { family inet { address 192.0.2.1/24; } } }
On Router PE5, configure the
ge-2/0/0
interface encapsulation. To configure the interface encapsulation, include theencapsulation
statement and specify theethernet-ccc
option. Configure thege-2/0/0.0
logical interface family for circuit cross-connect functionality. To configure the logical interface family, include thefamily
statement and specify theccc
optioncontent_copy zoom_out_map[edit interfaces] ge-2/0/0 { encapsulation ethernet-ccc; unit 0 { family ccc; } } lo0 { unit 0 { family inet { address 192.0.2.5/24; } } }
On Router PE3, configure the logical loopback interface. The loopback interface is used to establish the targeted LDP sessions to Routers PE1 and PE5.
content_copy zoom_out_map[edit interfaces] lo0 { unit 0 { family inet { address 192.0.2.3/24; } } }
Configuring Core-facing Interfaces
Step-by-Step Procedure
This procedure describes how to configure the core-facing
interfaces on the PE routers. This example does not include all the
core-facing interfaces shown in the physical topology illustration.
Enable the mpls
and inet
address families on
the core-facing interfaces.
On Router PE1, configure the
xe-0/3/0
interface. Include thefamily
statement and specify theinet
address family. Include theaddress
statement and specify10.10.1.1/30
as the interface address. Include thefamily
statement and specify thempls
address family.content_copy zoom_out_map[edit interfaces] xe-0/3/0 { unit 0 { family inet { address 10.10.1.1/30; } family mpls; } }
On Router PE3, configure the core-facing interfaces. Include the
family
statement and specify theinet
address family. Include theaddress
statement and specify the IPv4 addresses shown in the example as the interface addresses. Include thefamily
statement and specify thempls
address family. In the example, thexe-0/0/0
interface is connected to the route reflector, thexe-0/1/0
interface is connected to Router PE5, thexe-0/2/0
interface is connected to Router PE2, and thexe-0/3/0
interface is connected to Router PE1.content_copy zoom_out_map[edit interfaces] xe-0/0/0 { unit 0 { family inet { address 10.10.20.2/30; } family mpls; } } xe-0/1/0 { unit 0 { family inet { address 10.10.6.1/30; } family mpls; } } xe-0/2/0 { unit 0 { family inet { address 10.10.5.2/30; } family mpls; } } xe-0/3/0 { unit 0 { family inet { address 10.10.1.2/30; } family mpls; } }
On Router PE5, configure the
xe-0/1/0
interface. Include thefamily
statement and specify theinet
address family. Include theaddress
statement and specify10.10.6.2/30
as the interface address. Include thefamily
statement and specify thempls
address family.content_copy zoom_out_map[edit interfaces] xe-0/1/0 { unit 0 { family inet { address 10.10.6.2/30; } family mpls; } }
Configuring Protocols
Step-by-Step Procedure
This procedure describes how to configure the protocols used in this example. If your network contains P routers, configure the protocols on the P routers also.
Configure all of the PE routers and P routers with OSPF as the
IGP protocol. Enable MPLS and LDP protocols on all of the interfaces
except fxp.0
.
On Router PE1, enable OSPF as the IGP. Enable the MPLS and LDP protocols on all interfaces except
fxp.0
. LDP is used as the signaling protocol on Router PE1 for the Layer 2 circuit. The following configuration snippet shows the protocol configuration for Router PE1:content_copy zoom_out_map[edit] protocols { mpls { interface all; interface fxp0.0 { disable; } } ospf { traffic-engineering; area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } }
Configure the PE and P routers with OSPF as the IGP. Enable the MPLS and LDP protocols on all interfaces except
fxp.0
. The following configuration snippet shows the protocol configuration for Router PE3:content_copy zoom_out_map[edit] protocols { mpls { interface all; interface fxp0.0 { disable; } } ospf { traffic-engineering; area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } }
Configuring the Layer 2 Circuits
Step-by-Step Procedure
This procedure describes how to configure the Layer 2 circuits.
In this example the ignore-mtu-mismatch
statement
is required for the circuit to come up.
On Router PE1, configure the Layer 2 circuit. Include the
l2circuit
statement. Include theneighbor
statement and specify the loopback IPv4 address of Router PE3 as the neighbor. Include the interface statement and specifyge-1/0/0.0
as the logical interface that is participating in the Layer 2 circuit. Include thevirtual-circuit-id
statement and specify100
as the identifier. Include theignore-mtu-mismatch
statement to allow a Layer 2 circuit to be established even though the maximum transmission unit (MTU) configured on the local PE router does not match the MTU configured on the remote PE router.content_copy zoom_out_map[edit] protocols { l2circuit { neighbor 192.0.2.3 { interface ge-1/0/0.0 { virtual-circuit-id 100; ignore-mtu-mismatch; } } } }
On Router PE5, configure the Layer 2 circuit. Include the
l2circuit
statement. Include theneighbor
statement and specify the loopback IPv4 address of Router PE3 as the neighbor. Include the interface statement and specifyge-2/0/0.0
as the logical interface that is participating in the Layer 2 circuit. Include thevirtual-circuit-id
statement and specify200
as the identifier. Include theignore-mtu-mismatch
statement to allow a Layer 2 circuit to be established even though the MTU configured on the local PE router does not match the MTU configured on the remote PE router.content_copy zoom_out_map[edit] protocols { l2circuit { neighbor 192.0.2.3 { interface ge-2/0/0.0 { virtual-circuit-id 200; ignore-mtu-mismatch; } } } }
On Router PE3, configure the Layer 2 circuit to Router PE1. Include the
l2circuit
statement. Include theneighbor
statement and specify the loopback IPv4 address of Router PE1 as the neighbor. Include the interface statement and specifyiw0.0
as the logical interworking interface that is participating in the Layer 2 circuit. Include thevirtual-circuit-id
statement and specify100
as the identifier. Include theignore-mtu-mismatch
statement to allow a Layer 2 circuit to be established even though the MTU configured on the local PE router does not match the MTU configured on the remote PE router.On Router PE3, configure the Layer 2 circuit to Router PE5. Include the
l2circuit
statement. Include theneighbor
statement and specify the loopback IPv4 address of Router PE5 as the neighbor. Include the interface statement and specifyiw0.1
as the logical interworking interface that is participating in the Layer 2 circuit. Include thevirtual-circuit-id
statement and specify200
as the identifier. Include theignore-mtu-mismatch
statement.content_copy zoom_out_map[edit protocols] l2circuit { neighbor 192.0.2.1 { interface iw0.0 { virtual-circuit-id 100; ignore-mtu-mismatch; } } neighbor 192.0.2.5 { interface iw0.1 { virtual-circuit-id 200; ignore-mtu-mismatch; } } }
Interconnecting the Layer 2 Circuits
Step-by-Step Procedure
Router PE3 is the router that is stitching the Layer 2 circuits together using the interworking interface. The configuration of the peer unit interfaces is what makes the interconnection.
On Router PE3, configure the
iw0.0
interface. Include theencapsulation
statement and specify theethernet-ccc
option. Include thepeer-unit
statement and specify the logical interface unit1
as the peer tunnel interface.On Router PE3, configure the
iw0.1
interface. Include theencapsulation
statement and specify theethernet-ccc
option. Include thepeer-unit
statement and specify the logical interface unit0
as the peer tunnel interface.content_copy zoom_out_map[edit interfaces] iw0 { unit 0 { encapsulation ethernet-ccc; peer-unit 1; } unit 1 { encapsulation ethernet-ccc; peer-unit 0; } }
On Router PE3, configure the Layer 2 interworking
l2iw
protocol. To configure the Layer 2 interworking protocol, include thel2iw
statement at the[edit protocols]
hierarchy level.content_copy zoom_out_map[edit] protocols { l2iw; }
On each router, commit the configuration.
content_copy zoom_out_mapuser@host> commit check configuration check succeeds user@host> commit
Verifying the Layer 2 Circuit to Layer 2 Circuit Interconnection
Step-by-Step Procedure
Verify that the Layer 2 circuit connection on Router PE1 is up, the LDP neighbors are correct, and the MPLS label operations are correct.
On Router PE1, use the
show l2circuit connections
command to verify that the Layer 2 circuit from Router PE1 to Router PE3 isUp
.content_copy zoom_out_mapuser@PE1> show l2circuit connections Layer-2 Circuit Connections: Legend for connection status (St) EI -- encapsulation invalid NP -- interface h/w not present MM -- mtu mismatch Dn -- down EM -- encapsulation mismatch VC-Dn -- Virtual circuit Down CM -- control-word mismatch Up -- operational VM -- vlan id mismatch CF -- Call admission control failure OL -- no outgoing label IB -- TDM incompatible bitrate NC -- intf encaps not CCC/TCC TM -- TDM misconfiguration BK -- Backup Connection ST -- Standby Connection CB -- rcvd cell-bundle size bad XX -- unknown SP -- Static Pseudowire Legend for interface status Up -- operational Dn -- down Neighbor: 192.0.2.3 Interface Type St Time last up # Up trans ge-1/0/0.0(vc 100) rmt
Up
Jan 5 22:00:49 2010 1 Remote PE: 192.0.2.3, Negotiated control-word: Yes (Null) Incoming label: 301328, Outgoing label: 314736 Local interface: ge-1/0/0.0, Status: Up, Encapsulation: ETHERNETOn Router PE1, use the
show ldp neighbor
command to verify that the IPv4 address of Router PE3 is shown as the LDP neighbor.content_copy zoom_out_mapuser@PE1> show ldp neighbor Address Interface Label space ID Hold time 192.0.2.3 lo0.0 192.0.2.3:0 41
On Router PE 1, use the
show route table mpls.0
command to verify the Layer 2 circuit is using the LDP label to Router PE3 in both directions (Push and Pop). In the example below, the Layer 2 circuit is associated with LDP label301328
.content_copy zoom_out_mapuser@PE1> show route table mpls.0 mpls.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden) + = Active Route, - = Last Active, * = Both 0 *[MPLS/0] 1w1d 08:25:39, metric 1 Receive 1 *[MPLS/0] 1w1d 08:25:39, metric 1 Receive 2 *[MPLS/0] 1w1d 08:25:39, metric 1 Receive 300432 *[LDP/9] 3d 01:13:57, metric 1 > to 10.10.2.2 via xe-0/1/0.0, Pop 300432(S=0) *[LDP/9] 3d 01:13:57, metric 1 > to 10.10.2.2 via xe-0/1/0.0, Pop 300768 *[LDP/9] 3d 01:13:57, metric 1 > to 10.10.3.2 via xe-0/2/0.0, Pop 300768(S=0) *[LDP/9] 3d 01:13:57, metric 1 > to 10.10.3.2 via xe-0/2/0.0, Pop 300912 *[LDP/9] 3d 01:13:57, metric 1 > to 10.10.3.2 via xe-0/2/0.0, Swap 299856 301264 *[LDP/9] 3d 01:13:53, metric 1 > to 10.10.1.2 via xe-0/3/0.0, Swap 308224 301312 *[LDP/9] 3d 01:13:56, metric 1 > to 10.10.1.2 via xe-0/3/0.0, Pop 301312(S=0) *[LDP/9] 3d 01:13:56, metric 1 > to 10.10.1.2 via xe-0/3/0.0, Pop
301328 *[L2CKT/7] 02:33:26 > via ge-1/0/0.0, Pop Offset: 4 ge-1/0/0.0 *[L2CKT/7] 02:33:26, metric2 1 > to 10.10.1.2 via xe-0/3/0.0, Push 314736 Offset: -4
On Router PE3, use the
show l2circuit connections
command to verify that the Layer 2 circuit from Router PE3 to Router PE5 isUp
, that the Layer 2 circuit from Router PE3 to Router PE1 isUp
, that the connections to Router PE1 and Router PE5 use the iw0 interface, and that the status for both local iw0 interfaces isUp
.content_copy zoom_out_mapuser@PE3> show l2circuit connections Layer-2 Circuit Connections: Legend for connection status (St) EI -- encapsulation invalid NP -- interface h/w not present MM -- mtu mismatch Dn -- down EM -- encapsulation mismatch VC-Dn -- Virtual circuit Down CM -- control-word mismatch Up -- operational VM -- vlan id mismatch CF -- Call admission control failure OL -- no outgoing label IB -- TDM incompatible bitrate NC -- intf encaps not CCC/TCC TM -- TDM misconfiguration BK -- Backup Connection ST -- Standby Connection CB -- rcvd cell-bundle size bad XX -- unknown SP -- Static Pseudowire Legend for interface status Up -- operational Dn -- down Neighbor: 192.0.2.1 Interface Type St Time last up # Up trans iw0.0(vc 100) rmt Up Jan 5 13:50:14 2010 1 Remote PE: 192.0.2.1, Negotiated control-word: Yes (Null) Incoming label: 314736, Outgoing label: 301328 Local interface: iw0.0, Status: Up, Encapsulation: ETHERNET Neighbor: 192.0.2.5 Interface Type St Time last up # Up trans iw0.1(vc 200) rmt Up Jan 5 13:49:58 2010 1 Remote PE: 192.0.2.5, Negotiated control-word: Yes (Null) Incoming label: 314752, Outgoing label: 300208 Local interface: iw0.1, Status: Up, Encapsulation: ETHERNET
On Router PE3, use the
show ldp neighbor
command to verify that the correct IPv4 addresses are shown as the LDP neighbor.content_copy zoom_out_mapuser@PE3> show ldp neighbor Address Interface Label space ID Hold time 192.0.2.1 lo0.0 192.0.2.1:0 44 192.0.2.2 lo0.0 192.0.2.2:0 42 192.0.2.4 lo0.0 192.0.2.4:0 31 192.0.2.5 lo0.0 192.0.2.5:0 44
On Router PE3, use the
show route table mpls.0
command to verify that thempls.0
routing table is populated with the Layer 2 interworking routes. Notice that in this example, the router is swapping label314736
received from Router PE1 on theiw0.0
to label301328
.content_copy zoom_out_mapuser@PE3> show route table mpls.0 mpls.0: 16 destinations, 18 routes (16 active, 2 holddown, 0 hidden) + = Active Route, - = Last Active, * = Both 0 *[MPLS/0] 1w1d 08:28:24, metric 1 Receive 1 *[MPLS/0] 1w1d 08:28:24, metric 1 Receive 2 *[MPLS/0] 1w1d 08:28:24, metric 1 Receive 308160 *[LDP/9] 3d 01:16:55, metric 1 > to 10.10.1.1 via xe-0/3/0.0, Pop 308160(S=0) *[LDP/9] 3d 01:16:55, metric 1 > to 10.10.1.1 via xe-0/3/0.0, Pop 308176 *[LDP/9] 3d 01:16:54, metric 1 > to 10.10.6.2 via xe-0/1/0.0, Pop 308176(S=0) *[LDP/9] 3d 01:16:54, metric 1 > to 10.10.6.2 via xe-0/1/0.0, Pop 308192 *[LDP/9] 00:21:40, metric 1 > to 10.10.20.1 via xe-0/0/0.0, Swap 601649 to 10.10.6.2 via xe-0/1/0.0, Swap 299856 308208 *[LDP/9] 3d 01:16:54, metric 1 > to 10.10.5.1 via xe-0/2/0.0, Pop 308208(S=0) *[LDP/9] 3d 01:16:54, metric 1 > to 10.10.5.1 via xe-0/2/0.0, Pop 308224 *[LDP/9] 3d 01:16:52, metric 1 > to 10.10.20.1 via xe-0/0/0.0, Pop 308224(S=0) *[LDP/9] 3d 01:16:52, metric 1 > to 10.10.20.1 via xe-0/0/0.0, Pop 314736 *[L2IW/6] 02:35:31, metric2 1 > to 10.10.6.2 via xe-0/1/0.0, Swap 300208 [L2CKT/7] 02:35:31 > via iw0.0, Pop Offset: 4 314752 *[L2IW/6] 02:35:31, metric2 1 > to 10.10.1.1 via xe-0/3/0.0, Swap 301328 [L2CKT/7] 02:35:47 > via iw0.1, Pop Offset: 4 iw0.0 *[L2CKT/7] 02:35:31, metric2 1 > to 10.10.1.1 via xe-0/3/0.0, Push 301328 Offset: -4 iw0.1 *[L2CKT/7] 02:35:47, metric2 1 > to 10.10.6.2 via xe-0/1/0.0, Push 300208 Offset: -4
Verify that Router CE1 can send traffic to and receive traffic from Router CE5 across the interconnection, using the
ping
command.content_copy zoom_out_mapuser@CE1>
ping 198.51.100.11
PING 198.51.100.11 (198.51.100.11): 56 data bytes 64 bytes from 198.51.100.11: icmp_seq=1 ttl=64 time=22.425 ms 64 bytes from 198.51.100.11: icmp_seq=2 ttl=64 time=1.299 ms 64 bytes from 198.51.100.11: icmp_seq=3 ttl=64 time=1.032 ms 64 bytes from 198.51.100.11: icmp_seq=4 ttl=64 time=1.029 msVerify that Router CE5 can send traffic to and receive traffic from Router CE1 across the interconnection, using the
ping
command.content_copy zoom_out_mapuser@CE5>
ping 198.51.100.1
PING 198.51.100.1 (198.51.100.1): 56 data bytes 64 bytes from 198.51.100.1: icmp_seq=0 ttl=64 time=1.077 ms 64 bytes from 198.51.100.1: icmp_seq=1 ttl=64 time=0.957 ms 64 bytes from 198.51.100.1: icmp_seq=2 ttl=64 time=1.057 ms 1.017 ms
Results
The configuration and verification of this example has been completed. The following section is for your reference.
The relevant sample configuration for Router PE1 follows.
Router PE1
[edit] interfaces { xe-0/1/0 { unit 0 { family inet { address 10.10.2.1/30; } family mpls; } } xe-0/2/0 { unit 0 { family inet { address 10.10.3..1/30; } family mpls; } } xe-0/3/0 { unit 0 { family inet { address 10.10.1.1/30; } family mpls; } } ge-1/0/0 { encapsulation ethernet-ccc; unit 0 { family ccc; } } lo0 { unit 0 { family inet { address 192.0.2.1/24; } } } } forwarding-options { hash-key { family inet { layer-3; layer-4; } family mpls { label-1; label-2; } } } routing-options { static { route 172.16.0.0/8 next-hop 172.19.59.1; } autonomous-system 65000; } protocols { mpls { interface all; interface fxp0.0 { disable; } } ospf { traffic-engineering; area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } l2circuit { neighbor 192.0.2.3 { interface ge-1/0/0.0 { virtual-circuit-id 100; ignore-mtu-mismatch; } } } }
The relevant sample configuration for Router PE3 follows.
Router PE3
[edit] interfaces { xe-0/0/0 { unit 0 { family inet { address 10.10.20.2/30; } family mpls; } } xe-0/1/0 { unit 0 { family inet { address 10.10.6.1/30; } family mpls; } } xe-0/2/0 { unit 0 { family inet { address 10.10.5.2/30; } family mpls; } } xe-0/3/0 { unit 0 { family inet { address 10.10.1.2/30; } family mpls; } } ge-1/0/1 { encapsulation ethernet-ccc; unit 0 { family ccc; } } iw0 { unit 0 { encapsulation ethernet-ccc; peer-unit 1; } unit 1 { encapsulation ethernet-ccc; peer-unit 0; } } lo0 { unit 0 { family inet { address 192.0.2.3/24; } } } } routing-options { static { route 172.16.0.0/8 next-hop 172.19.59.1; } autonomous-system 65000; } protocols { l2iw; mpls { interface all; interface fxp0.0 { disable; } } ospf { area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } l2circuit { neighbor 192.0.2.1 { interface iw0.0 { virtual-circuit-id 100; ignore-mtu-mismatch; } } neighbor 192.0.2.5 { interface iw0.1 { virtual-circuit-id 200; ignore-mtu-mismatch; } } } }