- play_arrow Common Configuration for All VPNs
- play_arrow VPNs Overview
- play_arrow Assigning Routing Instances to VPNs
- play_arrow Distributing Routes in VPNs
- play_arrow Distributing VPN Routes with Target Filtering
- Configuring BGP Route Target Filtering for VPNs
- Example: BGP Route Target Filtering for VPNs
- Example: Configuring BGP Route Target Filtering for VPNs
- Configuring Static Route Target Filtering for VPNs
- Understanding Proxy BGP Route Target Filtering for VPNs
- Example: Configuring Proxy BGP Route Target Filtering for VPNs
- Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs
- Reducing Network Resource Use with Static Route Target Filtering for VPNs
- play_arrow Configuring Forwarding Options for VPNs
- play_arrow Configuring Graceful Restart for VPNs
- play_arrow Configuring Class of Service for VPNs
- play_arrow Pinging VPNs
-
- play_arrow Common Configuration for Layer 2 VPNs and VPLS
- play_arrow Overview
- play_arrow Layer 2 VPNs Configuration Overview
- play_arrow Configuring Layer 2 Interfaces
- play_arrow Configuring Path Selection for Layer 2 VPNs and VPLS
- play_arrow Creating Backup Connections with Redundant Pseudowires
- play_arrow Configuring Class of Service for Layer 2 VPNs
- play_arrow Monitoring Layer 2 VPNs
- Configuring BFD for Layer 2 VPN and VPLS
- BFD Support for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Configuring BFD for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Connectivity Fault Management Support for EVPN and Layer 2 VPN Overview
- Configure a MEP to Generate and Respond to CFM Protocol Messages
-
- play_arrow Configuring Group VPNs
- play_arrow Configuring Public Key Infrastructure
- play_arrow Configuring Digital Certificate Validation
- play_arrow Configuring a Device for Certificate Chains
- play_arrow Managing Certificate Revocation
-
- play_arrow Configuring Layer 2 Circuits
- play_arrow Overview
- play_arrow Layer 2 Circuits Configuration Overview
- play_arrow Configuring Class of Service with Layer 2 Circuits
- play_arrow Configuring Pseudowire Redundancy for Layer 2 Circuits
- play_arrow Configuring Load Balancing for Layer 2 Circuits
- play_arrow Configuring Protection Features for Layer 2 Circuits
- Egress Protection LSPs for Layer 2 Circuits
- Configuring Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Example: Configuring an Egress Protection LSP for a Layer 2 Circuit
- Example: Configuring Layer 2 Circuit Protect Interfaces
- Example: Configuring Layer 2 Circuit Switching Protection
- play_arrow Monitoring Layer 2 Circuits with BFD
- play_arrow Troubleshooting Layer 2 Circuits
-
- play_arrow Configuring VPWS VPNs
- play_arrow Overview
- play_arrow Configuring VPWS VPNs
- Understanding FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring MPLS Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Understanding Multisegment Pseudowire for FEC 129
- Example: Configuring a Multisegment Pseudowire
- Configuring the FAT Flow Label for FEC 128 VPWS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPWS Pseudowires for Load-Balancing MPLS Traffic
-
- play_arrow Connecting Layer 2 VPNs and Circuits to Other VPNs
- play_arrow Connecting Layer 2 VPNs to Other VPNs
- play_arrow Connecting Layer 2 Circuits to Other VPNs
- Using the Layer 2 Interworking Interface to Interconnect a Layer 2 Circuit to a Layer 2 VPN
- Applications for Interconnecting a Layer 2 Circuit with a Layer 2 Circuit
- Example: Interconnecting a Layer 2 Circuit with a Layer 2 VPN
- Example: Interconnecting a Layer 2 Circuit with a Layer 2 Circuit
- Applications for Interconnecting a Layer 2 Circuit with a Layer 3 VPN
- Example: Interconnecting a Layer 2 Circuit with a Layer 3 VPN
-
- play_arrow Configuration Statements and Operational Commands
BGP Route Reflectors for VPLS
In large networks, it might be necessary to configure BGP route reflectors to reduce the control plane workload for the routers participating in the VPLS network. BGP route reflectors can help to reduce the workload of the network control plane in the following ways.
Making it unnecessary to configure all of the VPLS PE routers in a full mesh.
Limiting the total volume of BGP VPLS messages exchanged within the network by transmitting messages to interested routers only (instead of all of the BGP routers in the network)
Reducing the network signaling load whenever another BGP router is added to or removed from the network
The basic solution to these problems is to deploy a small group of BGP route reflectors that are in a full mesh with one another. Each of the VPLS PE routers is configured to have a BGP session with one or more of the route reflectors, making it unnecessary to maintain a full mesh of BGP sessions between all of the PE routers.
In the VPLS documentation, the word router in terms such as PE router is used to refer to any device that provides routing functions.
This type of configuration only affects the control plane of the VPLS network (how routers signal and tear down pseudowires to one another in the network). The actual data plane state and forwarding paths for the VPLS traffic are not modified by the route reflectors. Effectively, the VPLS pseudowires should take the same paths across the network whether or not you have configured route reflectors. For a description of how VPLS selects the best path to a PE router, see VPLS Path Selection Process for PE Routers.
The MAC addresses themselves are not exchanged or processed in any way by BGP. Each VPLS PE router performs all MAC address learning and aging individually. BGP's only function relative to VPLS is to exchange messages related to automatic discovery of PE routers being added to and removed from the VPLS network and the MPLS label exchange needed to signal a pseudowire from one PE router to another.