- play_arrow Managing Group Membership
- play_arrow Configuring IGMP and MLD
- play_arrow Configuring IGMP Snooping
- IGMP Snooping Overview
- Overview of Multicast Forwarding with IGMP Snooping or MLD Snooping in an EVPN-VXLAN Environment
- Configuring IGMP Snooping on Switches
- Example: Configuring IGMP Snooping on Switches
- Example: Configuring IGMP Snooping on EX Series Switches
- Verifying IGMP Snooping on EX Series Switches
- Changing the IGMP Snooping Group Timeout Value on Switches
- Monitoring IGMP Snooping
- Example: Configuring IGMP Snooping
- Example: Configuring IGMP Snooping on SRX Series Devices
- Configuring Point-to-Multipoint LSP with IGMP Snooping
- play_arrow Configuring MLD Snooping
- Understanding MLD Snooping
- Configuring MLD Snooping on an EX Series Switch VLAN (CLI Procedure)
- Configuring MLD Snooping on a Switch VLAN with ELS Support (CLI Procedure)
- Example: Configuring MLD Snooping on EX Series Switches
- Example: Configuring MLD Snooping on SRX Series Devices
- Configuring MLD Snooping Tracing Operations on EX Series Switches (CLI Procedure)
- Configuring MLD Snooping Tracing Operations on EX Series Switch VLANs (CLI Procedure)
- Example: Configuring MLD Snooping on EX Series Switches
- Example: Configuring MLD Snooping on Switches with ELS Support
- Verifying MLD Snooping on EX Series Switches (CLI Procedure)
- Verifying MLD Snooping on Switches
- play_arrow Configuring Multicast VLAN Registration
-
- play_arrow Configuring Protocol Independent Multicast
- play_arrow Understanding PIM
- play_arrow Configuring PIM Basics
- Configuring Different PIM Modes
- Configuring Multiple Instances of PIM
- Changing the PIM Version
- Optimizing the Number of Multicast Flows on QFabric Systems
- Modifying the PIM Hello Interval
- Preserving Multicast Performance by Disabling Response to the ping Utility
- Configuring PIM Trace Options
- Configuring BFD for PIM
- Configuring BFD Authentication for PIM
- play_arrow Routing Content to Densely Clustered Receivers with PIM Dense Mode
- play_arrow Routing Content to Larger, Sparser Groups with PIM Sparse Mode
- Understanding PIM Sparse Mode
- Examples: Configuring PIM Sparse Mode
- Configuring Static RP
- Example: Configuring Anycast RP
- Configuring PIM Bootstrap Router
- Understanding PIM Auto-RP
- Configuring All PIM Anycast Non-RP Routers
- Configuring a PIM Anycast RP Router with MSDP
- Configuring Embedded RP
- Configuring PIM Filtering
- Examples: Configuring PIM RPT and SPT Cutover
- Disabling PIM
- play_arrow Configuring Designated Routers
- play_arrow Receiving Content Directly from the Source with SSM
- Understanding PIM Source-Specific Mode
- Example: Configuring Source-Specific Multicast
- Example: Configuring PIM SSM on a Network
- Example: Configuring an SSM-Only Domain
- Example: Configuring SSM Mapping
- Example: Configuring Source-Specific Multicast Groups with Any-Source Override
- Example: Configuring SSM Maps for Different Groups to Different Sources
- play_arrow Minimizing Routing State Information with Bidirectional PIM
- play_arrow Rapidly Detecting Communication Failures with PIM and the BFD Protocol
- play_arrow Configuring PIM Options
- play_arrow Verifying PIM Configurations
-
- play_arrow Configuring Multicast Routing Protocols
- play_arrow Connecting Routing Domains Using MSDP
- play_arrow Handling Session Announcements with SAP and SDP
- play_arrow Facilitating Multicast Delivery Across Unicast-Only Networks with AMT
- play_arrow Routing Content to Densely Clustered Receivers with DVMRP
-
- play_arrow Configuring Multicast VPNs
- play_arrow Configuring Draft-Rosen Multicast VPNs
- Draft-Rosen Multicast VPNs Overview
- Example: Configuring Any-Source Draft-Rosen 6 Multicast VPNs
- Example: Configuring a Specific Tunnel for IPv4 Multicast VPN Traffic (Using Draft-Rosen MVPNs)
- Example: Configuring Source-Specific Draft-Rosen 7 Multicast VPNs
- Understanding Data MDTs
- Example: Configuring Data MDTs and Provider Tunnels Operating in Any-Source Multicast Mode
- Example: Configuring Data MDTs and Provider Tunnels Operating in Source-Specific Multicast Mode
- Examples: Configuring Data MDTs
- play_arrow Configuring Next-Generation Multicast VPNs
- Understanding Next-Generation MVPN Network Topology
- Understanding Next-Generation MVPN Concepts and Terminology
- Understanding Next-Generation MVPN Control Plane
- Next-Generation MVPN Data Plane Overview
- Enabling Next-Generation MVPN Services
- Generating Next-Generation MVPN VRF Import and Export Policies Overview
- Multiprotocol BGP MVPNs Overview
- Configuring Multiprotocol BGP Multicast VPNs
- BGP-MVPN Inter-AS Option B Overview
- ACX Support for BGP MVPN
- Example: Configuring MBGP MVPN Extranets
- Understanding Redundant Virtual Tunnel Interfaces in MBGP MVPNs
- Example: Configuring Redundant Virtual Tunnel Interfaces in MBGP MVPNs
- Understanding Sender-Based RPF in a BGP MVPN with RSVP-TE Point-to-Multipoint Provider Tunnels
- Example: Configuring Sender-Based RPF in a BGP MVPN with RSVP-TE Point-to-Multipoint Provider Tunnels
- Example: Configuring Sender-Based RPF in a BGP MVPN with MLDP Point-to-Multipoint Provider Tunnels
- Configuring MBGP MVPN Wildcards
- Distributing C-Multicast Routes Overview
- Exchanging C-Multicast Routes
- Generating Source AS and Route Target Import Communities Overview
- Originating Type 1 Intra-AS Autodiscovery Routes Overview
- Signaling Provider Tunnels and Data Plane Setup
- Anti-spoofing support for MPLS labels in BGP/MPLS IP VPNs (Inter-AS Option B)
- BGP-MVPN SD-WAN Overlay
- play_arrow Configuring PIM Join Load Balancing
- Use Case for PIM Join Load Balancing
- Configuring PIM Join Load Balancing
- PIM Join Load Balancing on Multipath MVPN Routes Overview
- Example: Configuring PIM Join Load Balancing on Draft-Rosen Multicast VPN
- Example: Configuring PIM Join Load Balancing on Next-Generation Multicast VPN
- Example: Configuring PIM Make-Before-Break Join Load Balancing
- Example: Configuring PIM State Limits
-
- play_arrow General Multicast Options
- play_arrow Bit Index Explicit Replication (BIER)
- play_arrow Prevent Routing Loops with Reverse Path Forwarding
- play_arrow Use Multicast-Only Fast Reroute (MoFRR) to Minimize Packet Loss During Link Failures
- play_arrow Enable Multicast Between Layer 2 and Layer 3 Devices Using Snooping
- play_arrow Configure Multicast Routing Options
- play_arrow Controller-Based BGP Multicast Signaling
-
- play_arrow Troubleshooting
- play_arrow Knowledge Base
-
- play_arrow Configuration Statements and Operational Commands
Understanding Layer 3 Multicast Functionality on the SRX5K-MPC
Multicast is a “one source, many destinations” method of traffic distribution, meaning that only the destinations that explicitly indicate their need to receive the information from a particular source receive the traffic stream.
In the data plane of the SRX Series chassis, the SRX5000 line Module Port Concentrator (SRX5K-MPC) forwards Layer 3 IP multicast data packets, which include multicast protocol packets (for example, MLD, IGMP and PIM packets), and the data packets.
In incoming direction, the MPC receives multicast packets from an interface and forwards them to the central point or to a Services Processing Unit (SPU). The SPU performs multicast route lookup, flow-based security check, and packet replication.
In outgoing direction, the MPC receives copies of a multicast packet or Layer 3 multicast control protocol packets from SPU, and transmits them to either multicast capable routers or to hosts in a multicast group.
In the SRX Series chassis, the SPU perform multicast route lookup, if available, to forward an incoming multicast packet and replicates it for each multicast outgoing interface. After receiving replicated multicast packets and their corresponding outgoing interface information from the SPU, the MPC transmits these packets to next hops.
On all SRX Series Firewalls, during RG1 failover with multicast traffic and high number of multicast sessions, the failover delay is from 90 through 120 seconds for traffic to resume on the secondary node. The delay of 90 through 120 seconds is only for the first failover. For subsequent failovers, the traffic resumes within 8 through 18 seconds.