- play_arrow Overview
- play_arrow Managing Group Membership
- play_arrow Configuring IGMP and MLD
- play_arrow Configuring IGMP Snooping
- IGMP Snooping Overview
- Overview of Multicast Forwarding with IGMP Snooping or MLD Snooping in an EVPN-VXLAN Environment
- Configuring IGMP Snooping on Switches
- Example: Configuring IGMP Snooping on Switches
- Example: Configuring IGMP Snooping on EX Series Switches
- Verifying IGMP Snooping on EX Series Switches
- Changing the IGMP Snooping Group Timeout Value on Switches
- Monitoring IGMP Snooping
- Example: Configuring IGMP Snooping
- Example: Configuring IGMP Snooping on SRX Series Devices
- Configuring Point-to-Multipoint LSP with IGMP Snooping
- play_arrow Configuring MLD Snooping
- Understanding MLD Snooping
- Configuring MLD Snooping on an EX Series Switch VLAN (CLI Procedure)
- Configuring MLD Snooping on a Switch VLAN with ELS Support (CLI Procedure)
- Example: Configuring MLD Snooping on EX Series Switches
- Example: Configuring MLD Snooping on SRX Series Devices
- Configuring MLD Snooping Tracing Operations on EX Series Switches (CLI Procedure)
- Configuring MLD Snooping Tracing Operations on EX Series Switch VLANs (CLI Procedure)
- Example: Configuring MLD Snooping on EX Series Switches
- Example: Configuring MLD Snooping on Switches with ELS Support
- Verifying MLD Snooping on EX Series Switches (CLI Procedure)
- Verifying MLD Snooping on Switches
- play_arrow Configuring Multicast VLAN Registration
-
- play_arrow Configuring Protocol Independent Multicast
- play_arrow Understanding PIM
- play_arrow Configuring PIM Basics
- Configuring Different PIM Modes
- Configuring Multiple Instances of PIM
- Changing the PIM Version
- Optimizing the Number of Multicast Flows on QFabric Systems
- Modifying the PIM Hello Interval
- Preserving Multicast Performance by Disabling Response to the ping Utility
- Configuring PIM Trace Options
- Configuring BFD for PIM
- Configuring BFD Authentication for PIM
- play_arrow Routing Content to Densely Clustered Receivers with PIM Dense Mode
- play_arrow Routing Content to Larger, Sparser Groups with PIM Sparse Mode
- Understanding PIM Sparse Mode
- Examples: Configuring PIM Sparse Mode
- Configuring Static RP
- Example: Configuring Anycast RP
- Configuring PIM Bootstrap Router
- Understanding PIM Auto-RP
- Configuring All PIM Anycast Non-RP Routers
- Configuring a PIM Anycast RP Router with MSDP
- Configuring Embedded RP
- Configuring PIM Filtering
- Examples: Configuring PIM RPT and SPT Cutover
- Disabling PIM
- play_arrow Configuring Designated Routers
- play_arrow Receiving Content Directly from the Source with SSM
- Understanding PIM Source-Specific Mode
- Example: Configuring Source-Specific Multicast
- Example: Configuring PIM SSM on a Network
- Example: Configuring an SSM-Only Domain
- Example: Configuring SSM Mapping
- Example: Configuring Source-Specific Multicast Groups with Any-Source Override
- Example: Configuring SSM Maps for Different Groups to Different Sources
- play_arrow Minimizing Routing State Information with Bidirectional PIM
- play_arrow Rapidly Detecting Communication Failures with PIM and the BFD Protocol
- play_arrow Configuring PIM Options
- play_arrow Verifying PIM Configurations
-
- play_arrow Configuring Multicast Routing Protocols
- play_arrow Connecting Routing Domains Using MSDP
- play_arrow Handling Session Announcements with SAP and SDP
- play_arrow Facilitating Multicast Delivery Across Unicast-Only Networks with AMT
- play_arrow Routing Content to Densely Clustered Receivers with DVMRP
-
- play_arrow General Multicast Options
- play_arrow Bit Index Explicit Replication (BIER)
- play_arrow Prevent Routing Loops with Reverse Path Forwarding
- play_arrow Use Multicast-Only Fast Reroute (MoFRR) to Minimize Packet Loss During Link Failures
- play_arrow Enable Multicast Between Layer 2 and Layer 3 Devices Using Snooping
- play_arrow Configure Multicast Routing Options
- play_arrow Controller-Based BGP Multicast Signaling
-
- play_arrow Troubleshooting
- play_arrow Knowledge Base
-
- play_arrow Configuration Statements and Operational Commands
Configuring PIM Join Load Balancing
By default, PIM join messages are sent toward a source based on the RPF routing table check. If there is more than one equal-cost path toward the source, then one upstream interface is chosen to send the join message. This interface is also used for all downstream traffic, so even though there are alternative interfaces available, the multicast load is concentrated on one upstream interface and routing device.
For PIM sparse mode, you can configure PIM join load balancing to spread join messages and traffic across equal-cost upstream paths (interfaces and routing devices) provided by unicast routing toward a source. PIM join load balancing is only supported for PIM sparse mode configurations.
PIM join load balancing is supported on draft-rosen multicast VPNs (also referred to as dual PIM multicast VPNs) and multiprotocol BGP-based multicast VPNs (also referred to as next-generation Layer 3 VPN multicast). When PIM join load balancing is enabled in a draft-rosen Layer 3 VPN scenario, the load balancing is achieved based on the join counts for the far-end PE routing devices, not for any intermediate P routing devices.
If an internal BGP (IBGP) multipath forwarding VPN route is available, the Junos OS uses the multipath forwarding VPN route to send join messages to the remote PE routers to achieve load balancing over the VPN.
By default, when multiple PIM joins are received for different groups, all joins are sent to the same upstream gateway chosen by the unicast routing protocol. Even if there are multiple equal-cost paths available, these alternative paths are not utilized to distribute multicast traffic from the source to the various groups.
When PIM join load balancing is configured, the PIM joins are distributed equally among all equal-cost upstream interfaces and neighbors. Every new join triggers the selection of the least-loaded upstream interface and neighbor. If there are multiple neighbors on the same interface (for example, on a LAN), join load balancing maintains a value for each of the neighbors and distributes multicast joins (and downstream traffic) among these as well.
Join counts for interfaces and neighbors are maintained globally, not on a per-source basis. Therefore, there is no guarantee that joins for a particular source are load-balanced. However, the joins for all sources and all groups known to the routing device are load-balanced. There is also no way to administratively give preference to one neighbor over another: all equal-cost paths are treated the same way.
You can configure message filtering globally or for a routing instance. This example shows the global configuration.
You configure PIM join load balancing on the non-RP routers in the PIM domain.