- play_arrow Flow Monitoring and Flow Collection Services
- play_arrow Understanding Flow Monitoring
- play_arrow Monitoring Traffic Using Active Flow Monitoring
- Configuring Active Flow Monitoring
- Active Flow Monitoring System Requirements
- Active Flow Monitoring Applications
- Active Flow Monitoring PIC Specifications
- Active Flow Monitoring Overview
- Active Flow Monitoring Overview
- Example: Configuring Active Monitoring on an M, MX or T Series Router’s Logical System
- Example: Configuring Flow Monitoring on an MX Series Router with MS-MIC and MS-MPC
- Configuring Services Interface Redundancy with Flow Monitoring
- Configuring Inline Active Flow Monitoring Using Routers, Switches or NFX250
- Configuring Flow Offloading on MX Series Routers
- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers
- Configuring Actively Monitored Interfaces on M, MX and T Series Routers
- Collecting Flow Records
- Configuring M, MX and T Series Routers for Discard Accounting with an Accounting Group
- Configuring M, MX and T Series Routers for Discard Accounting with a Sampling Group
- Configuring M, MX and T Series Routers for Discard Accounting with a Template
- Defining a Firewall Filter on M, MX and T Series Routers to Select Traffic for Active Flow Monitoring
- Processing IPv4 traffic on an M, MX or T Series Router Using Monitoring services, Adaptive services or Multiservices Interfaces
- Replicating M, MX and T Series Routing Engine-Based Sampling to Multiple Flow Servers
- Replicating Version 9 Flow Aggregation From M, MX and T Series Routers to Multiple Flow Servers
- Configuring Routing Engine-Based Sampling on M, MX and T Series Routers for Export to Multiple Flow Servers
- Example: Copying Traffic to a PIC While an M, MX or T Series Router Forwards the Packet to the Original Destination
- Configuring an Aggregate Export Timer on M, MX and T Series Routers for Version 8 Records
- Example: Sampling Configuration for M, MX and T Series Routers
- Associating Sampling Instances for Active Flow Monitoring with a Specific FPC, MPC, or DPC
- Example: Sampling Instance Configuration
- Example: Sampling and Discard Accounting Configuration on M, MX and T Series Routers
- play_arrow Monitoring Traffic Using Passive Flow Monitoring
- Passive Flow Monitoring Overview
- Passive Flow Monitoring System Requirements for T Series, M Series and MX Series Routers
- Passive Flow Monitoring Router and Software Considerations for T Series, M Series and MX Series Routers
- Understanding Passive Flow Monitoring on T Series, M Series and MX Series Routers
- Enabling Passive Flow Monitoring on M Series, MX Series or T Series Routers
- Configuring Passive Flow Monitoring
- Example: Passive Flow Monitoring Configuration on M, MX and T Series Routers
- Configuring a Routing Table Group on an M, MX or T Series Router to Add Interface Routes into the Forwarding Instance
- Using IPSec and an ES PIC on an M, MX or T Series Router to Send Encrypted Traffic to a Packet Analyzer
- Applying a Firewall Filter Output Interface on an M, MX or T Series Router to Port-mirror Traffic to PICs or Flow Collection Services
- Monitoring Traffic on a Router with a VRF Instance and a Monitoring Group
- Specifying a Firewall Filter on an M, MX or T Series Router to Select Traffic to Monitor
- Configuring Input Interfaces, Monitoring Services Interfaces and Export Interfaces on M, MX or T Series Routers
- Establishing a VRF Instance on an M, MX or T Series Router for Monitored Traffic
- Configuring a Monitoring Group on an M, MX or T Series Router to Send Traffic to the Flow Server
- Configuring Policy Options on M, MX or T Series Routers
- Stripping MPLS Labels on ATM, Ethernet-Based and SONET/SDH Router Interfaces
- Using an M, MX or T Series Router Flow Collector Interface to Process and Export Multiple Flow Records
- Example: Configuring a Flow Collector Interface on an M, MX or T Series Router
- play_arrow Processing and Exporting Multiple Records Using Flow Collection
- play_arrow Logging Flow Monitoring Records with Version 9 and IPFIX Templates for NAT Events
- Understanding NAT Event Logging in Flow Monitoring Format on an MX Series Router or NFX250
- Configure Active Flow Monitoring Logs for NAT44/NAT64
- Configuring Log Generation of NAT Events in Flow Monitoring Record Format on an MX Series Router or NFX250
- Exporting Syslog Messages to an External Host Without Flow Monitoring Formats Using an MX Series Router or NFX250
- Exporting Version 9 Flow Data Records to a Log Collector Overview Using an MX Series Router or NFX250
- Understanding Exporting IPFIX Flow Data Records to a Log Collector Using an MX Series Router or NFX250
- Mapping Between Field Values for Version 9 Flow Templates and Logs Exported From an MX-Series Router or NFX250
- Mapping Between Field Values for IPFIX Flow Templates and Logs Exported From an MX Series Router or NFX250
- Monitoring NAT Events on MX Series Routers by Logging NAT Operations in Flow Template Formats
- Example: Configuring Logs in Flow Monitoring Format for NAT Events on MX Series Routers for Troubleshooting
-
- play_arrow Flow Capture Services
- play_arrow Dynamically Capturing Packet Flows Using Junos Capture Vision
- play_arrow Detecting Threats and Intercepting Flows Using Junos Flow-Tap and FlowTapLite Services
- Understanding the FlowTap and FlowTapLite Services
- Understanding FlowTap and FlowTapLite Architecture
- Configuring the FlowTap Service on MX Series Routers
- Configuring a FlowTap Interface on MX Series Routers
- Configuring FlowTap and FlowTapLite Security Properties
- FlowTap and FlowTapLite Application Restrictions
- Examples: Configuring the FlowTapLite Application on MX Series and ACX Series Routers
- Configuring FlowTapLite on MX Series Routers and M320 Routers with FPCs
-
- play_arrow Inline Monitoring Services and Inband Network Telemetry
- play_arrow Inline Monitoring Services
- play_arrow Flow-Based Telemetry
- play_arrow Inband Flow Analyzer 2.0
- play_arrow Juniper Resiliency Interface
-
- play_arrow Sampling and Discard Accounting Services
- play_arrow Sampling Data Using Traffic Sampling and Discard Accounting
- play_arrow Sampling Data Using Inline Sampling
- Understand Inline Active Flow Monitoring
- Configuring Inline Active Flow Monitoring Using Routers, Switches or NFX250
- Configuring Inline Active Flow Monitoring on MX80 and MX104 Routers
- Configuring Inline Active Flow Monitoring on PTX Series Routers
- Inline Active Flow Monitoring of MPLS-over-UDP Flows on PTX Series Routers
- Inline Active Flow Monitoring on IRB Interfaces
- Example: Configuring Inline Active Flow Monitoring on MX Series and T4000 Routers
- play_arrow Sampling Data Using Flow Aggregation
- Understanding Flow Aggregation
- Enabling Flow Aggregation
- Configuring Flow Aggregation on MX, M and T Series Routers and NFX250 to Use Version 5 or Version 8 cflowd
- Configuring Flow Aggregation on MX, M, vMX and T Series Routers and NFX250 to Use Version 9 Flow Templates
- Configuring Flow Aggregation on PTX Series Routers to Use Version 9 Flow Templates
- Configuring Inline Active Flow Monitoring to Use IPFIX Flow Templates on MX, vMX and T Series Routers, EX Series Switches, NFX Series Devices, and SRX Series Firewalls
- Configuring Flow Aggregation to Use IPFIX Flow Templates on PTX Series Routers
- Configuring Observation Domain ID and Source ID for Version 9 and IPFIX Flows
- Configuring Template ID and Options Template ID for Version 9 and IPFIX Flows
- Including Fragmentation Identifier and IPv6 Extension Header Elements in IPFIX Templates on MX Series Routers
- Directing Replicated Flows from M and T Series Routers to Multiple Flow Servers
- Logging cflowd Flows on M and T Series Routers Before Export
- Configuring Next-Hop Address Learning on MX Series and PTX Series Routers for Destinations Accessible Over Multiple Paths
-
- play_arrow Configuration Statements and Operational Commands
Inline Video Monitoring Syslog Messages on MX Series Routers
The following examples show the syslog messages produced when configured video monitoring thresholds are exceeded.
/var/log/messages
Mar 11 18:36:25 tstrtr01 fpc2 [MDI] DF: 56.71 ms, exceeded threshold for flow(src:192.0.2.2 dst:198.51.100.2 sport:1024 dport:2048) ingressing at interface xe-2/2/1.0 with template t1. Mar 11 18:36:25 tstrtr01 fpc2 [MDI] MLR : 112, exceeded threshold for flow (src:192.0.2.2 dst:198.51.100.2 sport:1024 dport:2048) ingressing at interface xe-2/2/1.0 with template t1. Mar 11 18:36:25 tstrtr01 fpc2 [MDI] MRV : -5.67, exceeded threshold for flow (src:192.0.2.2 dst:198.51.100.2 sport:1024 dport:2048) ingressing at interface xe-2/2/1.0 with template t1.
Console Messages
NPC2(tstrtr01 vty)# [Mar 12 01:40:58.411 LOG: Critical] [MDI] MLR : 420, exceeded threshold for flow (src:192.0.2.2 dst:198.51.100.2 sport:1024 dport:2048) ingressing at interface xe-2/2/1.0 with template t1. [Mar 12 01:40:58.411 LOG: Critical] [MDI] MRV : -14.89, exceeded threshold for flow (src:192.0.2.2 dst:198.51.100.2 sport:1024 dport:2048) ingressing at interface xe-2/2/1.0 with template t1. [Mar 12 01:40:59.412 LOG: Critical] [MDI] DF: 141.74 ms, exceeded threshold for flow(src:192.0.2.2 dst:198.51.100.2 sport:1024 dport:2048) ingressing at interface xe-2/2/1.0 with template t1.