- play_arrow Flow Capture Services
- play_arrow Dynamically Capturing Packet Flows Using Junos Capture Vision
- play_arrow Detecting Threats and Intercepting Flows Using Junos Flow-Tap and FlowTapLite Services
- Understanding the FlowTap and FlowTapLite Services
- Understanding FlowTap and FlowTapLite Architecture
- Configuring the FlowTap Service on MX Series Routers
- Configuring a FlowTap Interface on MX Series Routers
- Configuring FlowTap and FlowTapLite Security Properties
- FlowTap and FlowTapLite Application Restrictions
- Examples: Configuring the FlowTapLite Application on MX Series and ACX Series Routers
- Configuring FlowTapLite on MX Series Routers and M320 Routers with FPCs
-
- play_arrow Inline Monitoring Services and Inband Network Telemetry
- play_arrow Inline Monitoring Services
- play_arrow Flow-Based Telemetry
- play_arrow Inband Flow Analyzer 2.0
- play_arrow Juniper Resiliency Interface
-
- play_arrow Sampling and Discard Accounting Services
- play_arrow Sampling Data Using Traffic Sampling and Discard Accounting
- play_arrow Sampling Data Using Inline Sampling
- Understand Inline Active Flow Monitoring
- Configuring Inline Active Flow Monitoring Using Routers, Switches or NFX250
- Configuring Inline Active Flow Monitoring on MX80 and MX104 Routers
- Configuring Inline Active Flow Monitoring on PTX Series Routers
- Inline Active Flow Monitoring of MPLS-over-UDP Flows on PTX Series Routers
- Inline Active Flow Monitoring on IRB Interfaces
- Example: Configuring Inline Active Flow Monitoring on MX Series and T4000 Routers
- play_arrow Sampling Data Using Flow Aggregation
- Understanding Flow Aggregation
- Enabling Flow Aggregation
- Configuring Flow Aggregation on MX, M and T Series Routers and NFX250 to Use Version 5 or Version 8 cflowd
- Configuring Flow Aggregation on MX, M, vMX and T Series Routers and NFX250 to Use Version 9 Flow Templates
- Configuring Flow Aggregation on PTX Series Routers to Use Version 9 Flow Templates
- Configuring Inline Active Flow Monitoring to Use IPFIX Flow Templates on MX, vMX and T Series Routers, EX Series Switches, NFX Series Devices, and SRX Series Firewalls
- Configuring Flow Aggregation to Use IPFIX Flow Templates on PTX Series Routers
- Configuring Observation Domain ID and Source ID for Version 9 and IPFIX Flows
- Configuring Template ID and Options Template ID for Version 9 and IPFIX Flows
- Including Fragmentation Identifier and IPv6 Extension Header Elements in IPFIX Templates on MX Series Routers
- Directing Replicated Flows from M and T Series Routers to Multiple Flow Servers
- Logging cflowd Flows on M and T Series Routers Before Export
- Configuring Next-Hop Address Learning on MX Series and PTX Series Routers for Destinations Accessible Over Multiple Paths
-
- play_arrow Real-Time Performance Monitoring and Video Monitoring Services
- play_arrow Monitoring Traffic Using Real-Time Performance Monitoring and Two-Way Active Monitoring Protocol (TWAMP)
- Understanding Using Probes for Real-Time Performance Monitoring on M, T, ACX, MX, and PTX Series Routers, EX and QFX Switches
- Configuring RPM Probes on M, MX and T Series Routers and EX Series Switches
- Understanding Real-Time Performance Monitoring on EX and QFX Switches
- Real-Time Performance Monitoring for SRX Devices
- Configuring RPM Receiver Servers
- Limiting the Number of Concurrent RPM Probes on M, MX, T and PTX Routers and EX Series Switches
- Configuring RPM Timestamping on MX, M, T, and PTX Series Routers and EX Series Switches
- Configuring the Interface for RPM Timestamping for Client/Server on a Switch (EX Series)
- Analyzing Network Efficiency in IPv6 Networks on MX Series Routers Using RPM Probes
- Configuring BGP Neighbor Discovery Through RPM
- Examples: Configuring BGP Neighbor Discovery on SRX Series Firewalls and MX, M, T and PTX Series Routers With RPM
- Trace RPM Operations
- Examples: Configuring Real-Time Performance Monitoring on MX, M, T and PTX Series Routers
- Enabling RPM on MX, M and T Series Routers and SRX Firewalls for the Services SDK
- Understand Two-Way Active Measurement Protocol
- Configure TWAMP on ACX, MX, M, T, and PTX Series Routers, EX Series and QFX10000 Series Switches
- Example: Configuring TWAMP Client and Server on MX Series Routers
- Example: Configuring TWAMP Client and Server for SRX Series Firewalls
- Understanding TWAMP Auto-Restart
- Configuring TWAMP Client and TWAMP Server to Reconnect Automatically After TWAMP Server Unavailability
- play_arrow Managing License Server for Throughput Data Export
- play_arrow Testing the Performance of Network Devices Using RFC 2544-Based Benchmarking
- Understanding RFC 2544-Based Benchmarking Tests on MX Series Routers and SRX Series Firewalls
- Understanding RFC2544-Based Benchmarking Tests for E-LAN and E-Line Services on MX Series Routers
- Supported RFC 2544-Based Benchmarking Statements on MX Series Routers
- Configuring an RFC 2544-Based Benchmarking Test
- Enabling Support for RFC 2544-Based Benchmarking Tests on MX Series Routers
- Example: Configure an RFC 2544-Based Benchmarking Test on an MX104 Router for Layer 3 IPv4 Services
- Example: Configuring an RFC 2544-Based Benchmarking Test on an MX104 Router for UNI Direction of Ethernet Pseudowires
- Example: Configuring an RFC 2544-Based Benchmarking Test on an MX104 Router for NNI Direction of Ethernet Pseudowires
- Example: Configuring RFC2544-Based Benchmarking Tests on an MX104 Router for Layer 2 E-LAN Services in Bridge Domains
- Example: Configuring Benchmarking Tests to Measure SLA Parameters for E-LAN Services on an MX104 Router Using VPLS
- play_arrow Configuring RFC 2544-Based Benchmarking Tests on ACX Series
- RFC 2544-Based Benchmarking Tests for ACX Routers Overview
- Layer 2 and Layer 3 RFC 2544-Based Benchmarking Test Overview
- Configuring RFC 2544-Based Benchmarking Tests
- Configuring Ethernet Loopback for RFC 2544-Based Benchmarking Tests
- RFC 2544-Based Benchmarking Test States
- Example: Configure an RFC 2544-Based Benchmarking Test for Layer 3 IPv4 Services
- Example: Configuring an RFC 2544-Based Benchmarking Test for NNI Direction of Ethernet Pseudowires
- Example: Configuring an RFC 2544-Based Benchmarking Test for UNI Direction of Ethernet Pseudowires
- Configuring a Service Package to be Used in Conjunction with PTP
- play_arrow Tracking Streaming Media Traffic Using Inline Video Monitoring
- Understanding Inline Video Monitoring on MX Series Routers
- Configuring Inline Video Monitoring on MX Series Routers
- Inline Video Monitoring Syslog Messages on MX Series Routers
- Generation of SNMP Traps and Alarms for Inline Video Monitoring on MX Series Routers
- SNMP Traps for Inline Video Monitoring Statistics on MX Series Routers
- Processing SNMP GET Requests for MDI Metrics on MX Series Routers
-
- play_arrow Configuration Statements and Operational Commands
Flow Collection Overview
You can process and export multiple cflowd records with
a flow collector interface. You create a flow collector interface
on a Monitoring Services II or Multiservices 400 PIC. The flow collector
interface combines multiple cflowd records into a compressed ASCII
data file and exports the file to an FTP server. To convert a services
PIC into a flow collector interface, include the flow-collector
statement at the [edit chassis fpc fpc-slot pic pic-slot monitoring-services application]
hierarchy level.
You can use the services PIC for either flow collection or monitoring,
but not for both types of service simultaneously. When converting
the PIC between service types, you must configure the flow-collector
statement, take the PIC offline, and then bring the PIC back online.
Restarting the router does not enable the new service type.
A flow collector interface, designated by the cp-fpc/pic/port interface name, requires three logical interfaces for correct operation. Units 0 and 1 are used to send the compressed ASCII data files to an FTP server, while Unit 2 is used to receive cflowd records from a monitoring services interface.
Unlike conventional interfaces, the address
statement at the [edit interfaces cp-fpc/pic/port unit unit-number family inet]
hierarchy level corresponds
to the IP address of the Routing Engine. Likewise, the destination
statement at the [edit interfaces cp-fpc/pic/port unit unit-number family inet address ip-address]
hierarchy level corresponds to the IP address of the flow
collector interface. As a result, you must configure the destination
statement for Unit 0 and 1 with local addresses
that can reach the FTP server. Similarly, configure the destination
statement for Unit 2 with a local IP address
so it can reach the monitoring services interface that sends cflowd
records.
To activate flow collector services after the services PIC is
converted into a flow collector, include the flow-collector
statement at the [edit services]
hierarchy level.
After you activate the flow collector, you need to configure the following components:
Destination of the FTP server
File specifications
Input interface-to-flow collector interface mappings
Transfer log settings