- play_arrow Flow Monitoring and Flow Collection Services
- play_arrow Understanding Flow Monitoring
- play_arrow Monitoring Traffic Using Active Flow Monitoring
- Configuring Active Flow Monitoring
- Active Flow Monitoring System Requirements
- Active Flow Monitoring Applications
- Active Flow Monitoring PIC Specifications
- Active Flow Monitoring Overview
- Active Flow Monitoring Overview
- Example: Configuring Active Monitoring on an M, MX or T Series Router’s Logical System
- Example: Configuring Flow Monitoring on an MX Series Router with MS-MIC and MS-MPC
- Configuring Services Interface Redundancy with Flow Monitoring
- Configuring Inline Active Flow Monitoring Using Routers, Switches or NFX250
- Configuring Flow Offloading on MX Series Routers
- Configuring Active Flow Monitoring on PTX Series Packet Transport Routers
- Configuring Actively Monitored Interfaces on M, MX and T Series Routers
- Collecting Flow Records
- Configuring M, MX and T Series Routers for Discard Accounting with an Accounting Group
- Configuring M, MX and T Series Routers for Discard Accounting with a Sampling Group
- Configuring M, MX and T Series Routers for Discard Accounting with a Template
- Defining a Firewall Filter on M, MX and T Series Routers to Select Traffic for Active Flow Monitoring
- Processing IPv4 traffic on an M, MX or T Series Router Using Monitoring services, Adaptive services or Multiservices Interfaces
- Replicating M, MX and T Series Routing Engine-Based Sampling to Multiple Flow Servers
- Replicating Version 9 Flow Aggregation From M, MX and T Series Routers to Multiple Flow Servers
- Configuring Routing Engine-Based Sampling on M, MX and T Series Routers for Export to Multiple Flow Servers
- Example: Copying Traffic to a PIC While an M, MX or T Series Router Forwards the Packet to the Original Destination
- Configuring an Aggregate Export Timer on M, MX and T Series Routers for Version 8 Records
- Example: Sampling Configuration for M, MX and T Series Routers
- Associating Sampling Instances for Active Flow Monitoring with a Specific FPC, MPC, or DPC
- Example: Sampling Instance Configuration
- Example: Sampling and Discard Accounting Configuration on M, MX and T Series Routers
- play_arrow Monitoring Traffic Using Passive Flow Monitoring
- Passive Flow Monitoring Overview
- Passive Flow Monitoring System Requirements for T Series, M Series and MX Series Routers
- Passive Flow Monitoring Router and Software Considerations for T Series, M Series and MX Series Routers
- Understanding Passive Flow Monitoring on T Series, M Series and MX Series Routers
- Enabling Passive Flow Monitoring on M Series, MX Series or T Series Routers
- Configuring Passive Flow Monitoring
- Example: Passive Flow Monitoring Configuration on M, MX and T Series Routers
- Configuring a Routing Table Group on an M, MX or T Series Router to Add Interface Routes into the Forwarding Instance
- Using IPSec and an ES PIC on an M, MX or T Series Router to Send Encrypted Traffic to a Packet Analyzer
- Applying a Firewall Filter Output Interface on an M, MX or T Series Router to Port-mirror Traffic to PICs or Flow Collection Services
- Monitoring Traffic on a Router with a VRF Instance and a Monitoring Group
- Specifying a Firewall Filter on an M, MX or T Series Router to Select Traffic to Monitor
- Configuring Input Interfaces, Monitoring Services Interfaces and Export Interfaces on M, MX or T Series Routers
- Establishing a VRF Instance on an M, MX or T Series Router for Monitored Traffic
- Configuring a Monitoring Group on an M, MX or T Series Router to Send Traffic to the Flow Server
- Configuring Policy Options on M, MX or T Series Routers
- Stripping MPLS Labels on ATM, Ethernet-Based and SONET/SDH Router Interfaces
- Using an M, MX or T Series Router Flow Collector Interface to Process and Export Multiple Flow Records
- Example: Configuring a Flow Collector Interface on an M, MX or T Series Router
- play_arrow Processing and Exporting Multiple Records Using Flow Collection
- play_arrow Logging Flow Monitoring Records with Version 9 and IPFIX Templates for NAT Events
- Understanding NAT Event Logging in Flow Monitoring Format on an MX Series Router or NFX250
- Configure Active Flow Monitoring Logs for NAT44/NAT64
- Configuring Log Generation of NAT Events in Flow Monitoring Record Format on an MX Series Router or NFX250
- Exporting Syslog Messages to an External Host Without Flow Monitoring Formats Using an MX Series Router or NFX250
- Exporting Version 9 Flow Data Records to a Log Collector Overview Using an MX Series Router or NFX250
- Understanding Exporting IPFIX Flow Data Records to a Log Collector Using an MX Series Router or NFX250
- Mapping Between Field Values for Version 9 Flow Templates and Logs Exported From an MX-Series Router or NFX250
- Mapping Between Field Values for IPFIX Flow Templates and Logs Exported From an MX Series Router or NFX250
- Monitoring NAT Events on MX Series Routers by Logging NAT Operations in Flow Template Formats
- Example: Configuring Logs in Flow Monitoring Format for NAT Events on MX Series Routers for Troubleshooting
-
- play_arrow Inline Monitoring Services and Inband Network Telemetry
- play_arrow Inline Monitoring Services
- play_arrow Flow-Based Telemetry
- play_arrow Inband Flow Analyzer 2.0
- play_arrow Juniper Resiliency Interface
-
- play_arrow Sampling and Discard Accounting Services
- play_arrow Sampling Data Using Traffic Sampling and Discard Accounting
- play_arrow Sampling Data Using Inline Sampling
- Understand Inline Active Flow Monitoring
- Configuring Inline Active Flow Monitoring Using Routers, Switches or NFX250
- Configuring Inline Active Flow Monitoring on MX80 and MX104 Routers
- Configuring Inline Active Flow Monitoring on PTX Series Routers
- Inline Active Flow Monitoring of MPLS-over-UDP Flows on PTX Series Routers
- Inline Active Flow Monitoring on IRB Interfaces
- Example: Configuring Inline Active Flow Monitoring on MX Series and T4000 Routers
- play_arrow Sampling Data Using Flow Aggregation
- Understanding Flow Aggregation
- Enabling Flow Aggregation
- Configuring Flow Aggregation on MX, M and T Series Routers and NFX250 to Use Version 5 or Version 8 cflowd
- Configuring Flow Aggregation on MX, M, vMX and T Series Routers and NFX250 to Use Version 9 Flow Templates
- Configuring Flow Aggregation on PTX Series Routers to Use Version 9 Flow Templates
- Configuring Inline Active Flow Monitoring to Use IPFIX Flow Templates on MX, vMX and T Series Routers, EX Series Switches, NFX Series Devices, and SRX Series Firewalls
- Configuring Flow Aggregation to Use IPFIX Flow Templates on PTX Series Routers
- Configuring Observation Domain ID and Source ID for Version 9 and IPFIX Flows
- Configuring Template ID and Options Template ID for Version 9 and IPFIX Flows
- Including Fragmentation Identifier and IPv6 Extension Header Elements in IPFIX Templates on MX Series Routers
- Directing Replicated Flows from M and T Series Routers to Multiple Flow Servers
- Logging cflowd Flows on M and T Series Routers Before Export
- Configuring Next-Hop Address Learning on MX Series and PTX Series Routers for Destinations Accessible Over Multiple Paths
-
- play_arrow Real-Time Performance Monitoring and Video Monitoring Services
- play_arrow Monitoring Traffic Using Real-Time Performance Monitoring and Two-Way Active Monitoring Protocol (TWAMP)
- Understanding Using Probes for Real-Time Performance Monitoring on M, T, ACX, MX, and PTX Series Routers, EX and QFX Switches
- Configuring RPM Probes on M, MX and T Series Routers and EX Series Switches
- Understanding Real-Time Performance Monitoring on EX and QFX Switches
- Real-Time Performance Monitoring for SRX Devices
- Configuring RPM Receiver Servers
- Limiting the Number of Concurrent RPM Probes on M, MX, T and PTX Routers and EX Series Switches
- Configuring RPM Timestamping on MX, M, T, and PTX Series Routers and EX Series Switches
- Configuring the Interface for RPM Timestamping for Client/Server on a Switch (EX Series)
- Analyzing Network Efficiency in IPv6 Networks on MX Series Routers Using RPM Probes
- Configuring BGP Neighbor Discovery Through RPM
- Examples: Configuring BGP Neighbor Discovery on SRX Series Firewalls and MX, M, T and PTX Series Routers With RPM
- Trace RPM Operations
- Examples: Configuring Real-Time Performance Monitoring on MX, M, T and PTX Series Routers
- Enabling RPM on MX, M and T Series Routers and SRX Firewalls for the Services SDK
- Understand Two-Way Active Measurement Protocol
- Configure TWAMP on ACX, MX, M, T, and PTX Series Routers, EX Series and QFX10000 Series Switches
- Example: Configuring TWAMP Client and Server on MX Series Routers
- Example: Configuring TWAMP Client and Server for SRX Series Firewalls
- Understanding TWAMP Auto-Restart
- Configuring TWAMP Client and TWAMP Server to Reconnect Automatically After TWAMP Server Unavailability
- play_arrow Managing License Server for Throughput Data Export
- play_arrow Testing the Performance of Network Devices Using RFC 2544-Based Benchmarking
- Understanding RFC 2544-Based Benchmarking Tests on MX Series Routers and SRX Series Firewalls
- Understanding RFC2544-Based Benchmarking Tests for E-LAN and E-Line Services on MX Series Routers
- Supported RFC 2544-Based Benchmarking Statements on MX Series Routers
- Configuring an RFC 2544-Based Benchmarking Test
- Enabling Support for RFC 2544-Based Benchmarking Tests on MX Series Routers
- Example: Configure an RFC 2544-Based Benchmarking Test on an MX104 Router for Layer 3 IPv4 Services
- Example: Configuring an RFC 2544-Based Benchmarking Test on an MX104 Router for UNI Direction of Ethernet Pseudowires
- Example: Configuring an RFC 2544-Based Benchmarking Test on an MX104 Router for NNI Direction of Ethernet Pseudowires
- Example: Configuring RFC2544-Based Benchmarking Tests on an MX104 Router for Layer 2 E-LAN Services in Bridge Domains
- Example: Configuring Benchmarking Tests to Measure SLA Parameters for E-LAN Services on an MX104 Router Using VPLS
- play_arrow Configuring RFC 2544-Based Benchmarking Tests on ACX Series
- RFC 2544-Based Benchmarking Tests for ACX Routers Overview
- Layer 2 and Layer 3 RFC 2544-Based Benchmarking Test Overview
- Configuring RFC 2544-Based Benchmarking Tests
- Configuring Ethernet Loopback for RFC 2544-Based Benchmarking Tests
- RFC 2544-Based Benchmarking Test States
- Example: Configure an RFC 2544-Based Benchmarking Test for Layer 3 IPv4 Services
- Example: Configuring an RFC 2544-Based Benchmarking Test for NNI Direction of Ethernet Pseudowires
- Example: Configuring an RFC 2544-Based Benchmarking Test for UNI Direction of Ethernet Pseudowires
- Configuring a Service Package to be Used in Conjunction with PTP
- play_arrow Tracking Streaming Media Traffic Using Inline Video Monitoring
- Understanding Inline Video Monitoring on MX Series Routers
- Configuring Inline Video Monitoring on MX Series Routers
- Inline Video Monitoring Syslog Messages on MX Series Routers
- Generation of SNMP Traps and Alarms for Inline Video Monitoring on MX Series Routers
- SNMP Traps for Inline Video Monitoring Statistics on MX Series Routers
- Processing SNMP GET Requests for MDI Metrics on MX Series Routers
-
- play_arrow Configuration Statements and Operational Commands
Example: Configuring Junos Capture Vision on M and T Series Routers
The following example includes all parts of a complete Junos Capture Vision configuration.
Configure the Junos Capture Vision PIC interface:
[edit interfaces dfc-0/0/0] unit 0 { family inet { filter { output high; #Firewall filter to route control packets # through 'network-control' forwarding class. Control packets # are loss sensitive. } address 10.1.0.0/32 { # DFC PIC address destination 10.36.100.1; # DFC PIC address used by # the control source to correspond with the # monitoring platform } } unit 1 { # receive data packets on this logical interface family inet; family inet6; } unit 2 { # send out copies of matched packets on this logical interface family inet; }
Configure the capture group:
services dynamic-flow-capture { capture-group g1 { interfaces dfc-0/0/0; input-packet-rate-threshold 90k; pic-memory-threshold percentage 80; control-source cs1 { source-addresses 10.36.41.1; service-port 2400; notification-targets { 10.36.41.1 port 2100; } shared-key "$ABC123"; allowed-destinations cd1; } content-destination cd1 { address 10.36.70.2; ttl 244; } } }
Configure filter-based forwarding (FBF) to the Junos Capture Vision PIC interface, logical unit 1.
For more information about configuring passive monitoring interfaces, see Enabling Passive Flow Monitoring on M Series, MX Series or T Series Routers.
interfaces so-1/2/0 { encapsulation ppp; unit 0 { passive-monitor-mode; family inet { filter { input catch; } } } }
Configure the firewall filter:
firewall { filter catch { interface-specific; term def { then { count counter; routing-instance fbf_inst; } } } family inet { filter high { term all { then forwarding-class network-control; } } } }
Configure a forwarding routing instance. The next hop
points specifically to the logical interface corresponding to unit 1
, because only this particular logical unit is expected
to relay monitored data to the Junos Capture Vision PIC.
routing-instances fbf_inst { instance-type forwarding; routing-options { static { route 0.0.0.0/0 next-hop dfc-0/0/0.1; } } }
Configure routing table groups:
[edit] routing-options { interface-routes { rib-group inet common; } rib-groups { common { import-rib [ inet.0 fbf_inst.inet.0 ]; } } forwarding-table { export pplb; } }
Configure interfaces to the control source and content destination:
interfaces fe-4/1/2 { description "to cs1 from dfc"; unit 0 { family inet { address 10.36.41.2/30; } } } interfaces ge-7/0/0 { description "to cd1 from dfc"; unit 0 { family inet { address 10.36.70.1/30; } } }