- play_arrow Overview
- play_arrow Understanding How Class of Service Manages Congestion and Defines Traffic Forwarding Behavior
- Understanding How Class of Service Manages Congestion and Controls Service Levels in the Network
- How CoS Applies to Packet Flow Across a Network
- The Junos OS CoS Components Used to Manage Congestion and Control Service Levels
- Mapping CoS Component Inputs to Outputs
- Default Junos OS CoS Settings
- Packet Flow Through the Junos OS CoS Process Overview
- Configuring Basic Packet Flow Through the Junos OS CoS Process
- Example: Classifying All Traffic from a Remote Device by Configuring Fixed Interface-Based Classification
- Interface Types That Do Not Support Junos OS CoS
-
- play_arrow Configuring Platform-Specific Functionality
- play_arrow Configuring Class of Service on ACX Series Universal Metro Routers
- CoS on ACX Series Routers Features Overview
- Understanding CoS CLI Configuration Statements on ACX Series Routers
- DSCP Propagation and Default CoS on ACX Series Routers
- Configuring CoS on ACX Series Routers
- Classifiers and Rewrite Rules at the Global, Physical, and Logical Interface Levels Overview
- Configuring Classifiers and Rewrite Rules at the Global and Physical Interface Levels
- Applying DSCP and DSCP IPv6 Classifiers on ACX Series Routers
- Schedulers Overview for ACX Series Routers
- Shared and Dedicated Buffer Memory Pools on ACX Series Routers
- CoS for PPP and MLPPP Interfaces on ACX Series Routers
- CoS for NAT Services on ACX Series Routers
- Hierarchical Class of Service in ACX Series Routers
- Storm Control on ACX Series Routers Overview
- play_arrow Configuring Class of Service on MX Series 5G Universal Routing Platforms
- Junos CoS on MX Series 5G Universal Routing Platforms Overview
- CoS Features and Limitations on MX Series Routers
- Configuring and Applying IEEE 802.1ad Classifiers
- Scheduling and Shaping in Hierarchical CoS Queues for Traffic Routed to GRE Tunnels
- Example: Performing Output Scheduling and Shaping in Hierarchical CoS Queues for Traffic Routed to GRE Tunnels
- CoS-Based Interface Counters for IPv4 or IPv6 Aggregate on Layer 2
- Enabling a Timestamp for Ingress and Egress Queue Packets
- play_arrow Configuring Class of Service on PTX Series Packet Transport Routers
- CoS Features and Limitations on PTX Series Routers
- CoS Feature Differences Between PTX Series Packet Transport Routers and T Series Routers
- Understanding Scheduling on PTX Series Routers
- Virtual Output Queues on PTX Series Packet Transport Routers
- Example: Configuring Excess Rate for PTX Series Packet Transport Routers
- Identifying the Source of RED Dropped Packets on PTX Series Routers
- Configuring Queuing and Shaping on Logical Interfaces on PTX Series Routers
- Example: Configuring Queuing and Shaping on Logical Interfaces in PTX Series Packet Transport Routers
- Example: Configuring Strict-Priority Scheduling on a PTX Series Router
- CoS Support on EVPN VXLANs
- Understanding CoS CLI Configuration Statements on PTX Series Routers
- Classification Based on Outer Header of Decapsulation Tunnel
-
- play_arrow Configuring Line Card-Specific and Interface-Specific Functionality
- play_arrow Feature Support of Line Cards and Interfaces
- play_arrow Configuring Class of Service for Tunnels
- play_arrow Configuring Class of Service on Services PICs
- CoS on Services PICs Overview
- Configuring CoS Rules on Services PICs
- Configuring CoS Rule Sets on Services PICs
- Example: Configuring CoS Rules on Services PICs
- Packet Rewriting on Services Interfaces
- Multiservices PIC ToS Translation
- Fragmentation by Forwarding Class Overview
- Configuring Fragmentation by Forwarding Class
- Configuring Drop Timeout Interval for Fragmentation by Forwarding Class
- Example: Configuring Fragmentation by Forwarding Class
- Allocating Excess Bandwidth Among Frame Relay DLCIs on Multiservices PICs
- Configuring Rate Limiting and Sharing of Excess Bandwidth on Multiservices PICs
- play_arrow Configuring Class of Service on IQ and Enhanced IQ (IQE) PICs
- CoS on Enhanced IQ PICs Overview
- Calculation of Expected Traffic on IQE PIC Queues
- Configuring the Junos OS to Support Eight Queues on IQ Interfaces for T Series and M320 Routers
- BA Classifiers and ToS Translation Tables
- Configuring ToS Translation Tables
- Configuring Hierarchical Layer 2 Policers on IQE PICs
- Configuring Excess Bandwidth Sharing on IQE PICs
- Configuring Rate-Limiting Policers for High Priority Low-Latency Queues on IQE PICs
- Applying Scheduler Maps and Shaping Rate to Physical Interfaces on IQ PICs
- Applying Scheduler Maps to Chassis-Level Queues
- play_arrow Configuring Class of Service on Ethernet IQ2 and Enhanced IQ2 PICs
- CoS on Enhanced IQ2 PICs Overview
- CoS Features and Limitations on IQ2 and IQ2E PICs (M Series and T Series)
- Differences Between Gigabit Ethernet IQ and Gigabit Ethernet IQ2 PICs
- Shaping Granularity Values for Enhanced Queuing Hardware
- Ethernet IQ2 PIC RTT Delay Buffer Values
- Configuring BA Classifiers for Bridged Ethernet
- Setting the Number of Egress Queues on IQ2 and Enhanced IQ2 PICs
- Configuring the Number of Schedulers per Port for Ethernet IQ2 PICs
- Applying Scheduler Maps to Chassis-Level Queues
- CoS for L2TP Tunnels on Ethernet Interface Overview
- Configuring CoS for L2TP Tunnels on Ethernet Interfaces
- Configuring LNS CoS for Link Redundancy
- Example: Configuring L2TP LNS CoS Support for Link Redundancy
- Configuring Shaping on 10-Gigabit Ethernet IQ2 PICs
- Configuring Per-Unit Scheduling for GRE Tunnels Using IQ2 and IQ2E PICs
- Understanding Burst Size Configuration on IQ2 and IQ2E Interfaces
- Configuring Burst Size for Shapers on IQ2 and IQ2E Interfaces
- Configuring a CIR and a PIR on Ethernet IQ2 Interfaces
- Example: Configuring Shared Resources on Ethernet IQ2 Interfaces
- Configuring and Applying IEEE 802.1ad Classifiers
- Configuring Rate Limits to Protect Lower Queues on IQ2 and Enhanced IQ2 PICs
- Simple Filters Overview
- Configuring a Simple Filter
- play_arrow Configuring Class of Service on 10-Gigabit Ethernet LAN/WAN PICs with SFP+
- CoS on 10-Gigabit Ethernet LAN/WAN PIC with SFP+ Overview
- BA and Fixed Classification on 10-Gigabit Ethernet LAN/WAN PIC with SFP+ Overview
- DSCP Rewrite for the 10-Gigabit Ethernet LAN/WAN PIC with SFP+
- Configuring DSCP Rewrite for the 10-Gigabit Ethernet LAN/WAN PIC
- Queuing on 10-Gigabit Ethernet LAN/WAN PICs Properties
- Mapping Forwarding Classes to CoS Queues on 10-Gigabit Ethernet LAN/WAN PICs
- Scheduling and Shaping on 10-Gigabit Ethernet LAN/WAN PICs Overview
- Example: Configuring Shaping Overhead on 10-Gigabit Ethernet LAN/WAN PICs
- play_arrow Configuring Class of Service on Enhanced Queuing DPCs
- Enhanced Queuing DPC CoS Properties
- Configuring Rate Limits on Enhanced Queuing DPCs
- Configuring WRED on Enhanced Queuing DPCs
- Configuring MDRR on Enhanced Queuing DPCs
- Configuring Excess Bandwidth Sharing
- Configuring Customer VLAN (Level 3) Shaping on Enhanced Queuing DPCs
- Simple Filters Overview
- Configuring Simple Filters on Enhanced Queuing DPCs
- Configuring a Simple Filter
- play_arrow Configuring Class of Service on MICs, MPCs, and MLCs
- CoS Features and Limitations on MIC and MPC Interfaces
- Dedicated Queue Scaling for CoS Configurations on MIC and MPC Interfaces Overview
- Verifying the Number of Dedicated Queues Configured on MIC and MPC Interfaces
- Scaling of Per-VLAN Queuing on Non-Queuing MPCs
- Increasing Available Bandwidth on Rich-Queuing MPCs by Bypassing the Queuing Chip
- Flexible Queuing Mode
- Multifield Classifier for Ingress Queuing on MX Series Routers with MPC
- Example: Configuring a Filter for Use as an Ingress Queuing Filter
- Ingress Queuing Filter with Policing Functionality
- Ingress Rate Limiting on MX Series Routers with MPCs
- Rate Shaping on MIC and MPC Interfaces
- Per-Priority Shaping on MIC and MPC Interfaces Overview
- Example: Configuring Per-Priority Shaping on MIC and MPC Interfaces
- Configuring Static Shaping Parameters to Account for Overhead in Downstream Traffic Rates
- Example: Configuring Static Shaping Parameters to Account for Overhead in Downstream Traffic Rates
- Traffic Burst Management on MIC and MPC Interfaces Overview
- Understanding Hierarchical Scheduling for MIC and MPC Interfaces
- Configuring Ingress Hierarchical CoS on MIC and MPC Interfaces
- Configuring a CoS Scheduling Policy on Logical Tunnel Interfaces
- Per-Unit Scheduling and Hierarchical Scheduling for MPC Interfaces
- Managing Dedicated and Remaining Queues for Static CoS Configurations on MIC and MPC Interfaces
- Excess Bandwidth Distribution on MIC and MPC Interfaces Overview
- Bandwidth Management for Downstream Traffic in Edge Networks Overview
- Scheduler Delay Buffering on MIC and MPC Interfaces
- Managing Excess Bandwidth Distribution on Static Interfaces on MICs and MPCs
- Drop Profiles on MIC and MPC Interfaces
- Intelligent Oversubscription on MIC and MPC Interfaces Overview
- Jitter Reduction in Hierarchical CoS Queues
- Example: Reducing Jitter in Hierarchical CoS Queues
- CoS on Ethernet Pseudowires in Universal Edge Networks Overview
- CoS Scheduling Policy on Logical Tunnel Interfaces Overview
- Configuring CoS on an Ethernet Pseudowire for Multiservice Edge Networks
- CoS for L2TP LNS Inline Services Overview
- Configuring Static CoS for an L2TP LNS Inline Service
- CoS on Circuit Emulation ATM MICs Overview
- Configuring CoS on Circuit Emulation ATM MICs
- Understanding IEEE 802.1p Inheritance push and swap from a Transparent Tag
- Configuring IEEE 802.1p Inheritance push and swap from the Transparent Tag
- CoS on Application Services Modular Line Card Overview
- play_arrow Configuring Class of Service on Aggregated, Channelized, and Gigabit Ethernet Interfaces
- Limitations on CoS for Aggregated Interfaces
- Policer Support for Aggregated Ethernet Interfaces Overview
- Understanding Schedulers on Aggregated Interfaces
- Examples: Configuring CoS on Aggregated Interfaces
- Hierarchical Schedulers on Aggregated Ethernet Interfaces Overview
- Configuring Hierarchical Schedulers on Aggregated Ethernet Interfaces
- Example: Configuring Scheduling Modes on Aggregated Interfaces
- Enabling VLAN Shaping and Scheduling on Aggregated Interfaces
- Class of Service on demux Interfaces
- Example: Configuring Per-Unit Schedulers for Channelized Interfaces
- Applying Layer 2 Policers to Gigabit Ethernet Interfaces
-
- play_arrow Configuration Statements and Operational Commands
Applying Behavior Aggregate Classifiers to Logical Interfaces
This topic describes how to apply behavior aggregate (BA) classifiers to logical interfaces.
When you apply BA classifiers to a logical interface, you can
use interface wildcards for the interface-name
and logical-unit-number
.
For most PICs, if you apply an IEEE 802.1 classifier to a logical interface, you cannot apply non-IEEE classifiers to other logical interfaces on the same physical interface. This restriction does not apply to Gigabit Ethernet IQ2 PICs.
There are some restrictions on applying multiple BA classifiers to a single logical interface. Table 1 shows the supported combinations. In this table, the OSE PICs refer to the 10-port 10-Gigabit OSE PICs.
Classifier Combinations | Gigabit Ethernet IQ2 PICs | OSE PICs | Other PICs on M320, MX Series, T Series routers and on EX Series Switches | Other M Series with Regular FPCs | Other M Series with Enhanced FPCs |
---|---|---|---|---|---|
| No | No | No | No | No |
| Yes | Yes | Yes | No | No |
| Yes | Yes | No | No | No |
| Yes | Yes | No | No | Yes |
| Yes | Yes | Yes | No | Yes |
For Gigabit Ethernet IQ2 and 10-port 10-Gigabit Oversubscribed Ethernet (OSE) interfaces, family-specific classifiers take precedence over IEEE 802.1p BA classifiers. For example, if you configure a logical interface to use both an MPLS EXP and an IEEE 802.1p classifier, the EXP classifier takes precedence. MPLS-labeled packets are evaluated by the EXP classifier, and all other packets are evaluated by the IEEE 802.1p classifier. The same is true about other classifiers when combined with IEEE 802.1p classifiers on the same logical interface.
For an interface on an M Series FPC, you can apply only
the default exp
classifier. For an enhanced FPC, you can
create a new exp
classifier and apply it to an interface.
On MX960, MX480, MX240, MX80, M120, and M320 routers and EX Series switches with Enhanced Type III FPCs only, you can configure user-defined DSCP-based BA classification for MPLS interfaces (this feature is not available for IQE PICs or on MX Series routers and EX Series switches when ingress queuing is used) or VPLS or Layer 3 VPN routing instances (LSI interfaces). The DSCP-based classification for MPLS packets for Layer 2 VPNs is not supported.
If you do not apply a DSCP classifier, the default EXP
classifier is applied to MPLS traffic. At times you might need to
maintain the original classifier of the incoming packet, where you
neither want to configure a custom classifier for the interface nor
accept the default classifier, which would override the original classifier.
In that case, on MX Series devices only, you can apply the no-default
option for the interface. For example:
[edit class-of-service] interfaces interface-name unit unit-number { classifiers { no-default; } }
You can apply DSCP classification for MPLS traffic in the following usage scenarios:
In a Layer 3 VPN using a label-switched interface (LSI) routing instance.
Supported on the M120, M320, MX960, MX480, MX240, and MX80 routers.
DSCP classifier applied under
[edit class-of-service routing-instances]
on the egress provider edge (PE) router.
In VPLS using an LSI routing instance.
Supported on the M120, M320, MX960, MX480, MX240, and MX80 routers.
DSCP classifier applied under
[edit class-of-service routing-instances]
on the egress PE router.
In a Layer 3 VPN using a virtual tunnel (VT) routing instance.
Supported on the M120, M320, MX960, MX480, MX240, and MX80 routers.
DSCP classifier applied under
[edit class-of-service interfaces]
on the core-facing interface on the egress PE router.
In VPLS using the VT routing instance.
MPLS forwarding.
Supported on the M120, M320, MX960, MX480, MX240, and MX80 routers (not supported on IQE and MX when ingress queuing is enabled).
DSCP classifier applied under
[edit class-of-service interfaces]
on the ingress core-facing interface on the provider (P) or egress PE router.
MPLS forwarding when the label stacking is greater than 2 is not supported.
You can apply BA classifiers to a routing instance or a logical interface, depending on where you want to classify the packets:
To classify MPLS packets on the routing instance at the egress PE, include the
dscp
ordscp-ipv6
statements at the [edit class-of-service routing-instances routing-instance-name classifiers
] hierarchy level. For details, see Applying MPLS EXP Classifiers to Routing Instances.To classify MPLS packets at the core-facing interface, apply the classifier at the [
edit class-of-service interface interface-name unit unit-name classifiers (dscp | dscp-ipv6) classifier-name family mpls
] hierarchy level. The following procedure describes this method.
In the following example, you define a DSCP classifier
for IPv4 named dscp-ipv4-classifier
and a corresponding
IPv6 DSCP classifier for the fc-af11-class
forwarding class.
You then apply the IPv4 classifier to MPLS traffic and the IPv6 classifier
to Internet traffic on interface ge-2/0/3.0 or apply the same classifier
to both MPLS and IP traffic on interface ge-2/2/0. This example shows
both of these methods.
This is not a complete configuration.
You can apply DSCP and DSCP IPv6 classifiers to explicit
null MPLS packets. The family mpls
statement works the
same on both explicit null and non-null MPLS labels.