- play_arrow Features Common to EVPN-VXLAN, EVPN-MPLS, and EVPN-VPWS
- play_arrow Configuring Interfaces
- play_arrow MAC Address Features with EVPN Networks
- play_arrow Configuring Routing Instances for EVPN
- Configuring EVPN Routing Instances
- Configuring EVPN Routing Instances on EX9200 Switches
- MAC-VRF Routing Instance Type Overview
- EVPN Type 5 Route with VXLAN Encapsulation for EVPN-VXLAN
- EVPN Type 5 Route with MPLS encapsulation for EVPN-MPLS
- Understanding EVPN Pure Type 5 Routes
- Seamless VXLAN Stitching with Symmetric EVPN Type 2 Routes using Data Center Interconnect
- Symmetric Integrated Routing and Bridging with EVPN Type 2 Routes in EVPN-VXLAN Fabrics
- EVPN Type 2 and Type 5 Route Coexistence with EVPN-VXLAN
- Ingress Virtual Machine Traffic Optimization
- Tracing EVPN Traffic and Operations
- Migrating From BGP VPLS to EVPN Overview
- Configuring EVPN over Transport Class Tunnels
- Example: Configuring EVPN-VPWS over Transport Class Tunnels
- play_arrow Configuring Route Targets
- play_arrow Routing Policies for EVPN
- play_arrow Layer 3 Gateways with Integrated Routing and Bridging for EVPN Overlays
- play_arrow EVPN Multihoming
- EVPN Multihoming Overview
- EVPN Multihoming Designated Forwarder Election
- Understanding Automatically Generated ESIs in EVPN Networks
- Easy EVPN LAG (EZ-LAG) Configuration
- Configuring EVPN Active-Standby Multihoming to a Single PE Device
- Configuring EVPN-MPLS Active-Standby Multihoming
- Example: Configuring Basic EVPN-MPLS Active-Standby Multihoming
- Example: Configuring EVPN-MPLS Active-Standby Multihoming
- Example: Configuring Basic EVPN Active-Active Multihoming
- Example: Configuring EVPN Active-Active Multihoming
- Example: Configuring LACP for EVPN Active-Active Multihoming
- Example: Configuring LACP for EVPN VXLAN Active-Active Multihoming
- Example: Configuring an ESI on a Logical Interface With EVPN-MPLS Multihoming
- Configuring Dynamic List Next Hop
- play_arrow Link States and Network Isolation Conditions in EVPN Networks
- play_arrow EVPN Proxy ARP and ARP Suppression, and NDP and NDP Suppression
- play_arrow Configuring DHCP Relay Agents
- play_arrow High Availability in EVPN
- play_arrow Monitoring EVPN Networks
- play_arrow Layer 2 Control Protocol Transparency
-
- play_arrow EVPN-MPLS
- play_arrow Overview
- play_arrow Convergence in an EVPN MPLS Network
- play_arrow Pseudowire Termination at an EVPN
- play_arrow Configuring the Distribution of Routes
- Configuring an IGP on the PE and P Routers on EX9200 Switches
- Configuring IBGP Sessions Between PE Routers in VPNs on EX9200 Switches
- Configuring a Signaling Protocol and LSPs for VPNs on EX9200 Switches
- Configuring Entropy Labels
- Configuring Control Word for EVPN-MPLS
- Understanding P2MPs LSP for the EVPN Inclusive Provider Tunnel
- Configuring Bud Node Support
- play_arrow Configuring VLAN Services and Virtual Switch Support
- play_arrow Configuring Integrated Bridging and Routing
- EVPN with IRB Solution Overview
- An EVPN with IRB Solution on EX9200 Switches Overview
- Anycast Gateways
- Configuring EVPN with IRB Solution
- Configuring an EVPN with IRB Solution on EX9200 Switches
- Example: Configuring EVPN with IRB Solution
- Example: Configuring an EVPN with IRB Solution on EX9200 Switches
- play_arrow Configuring IGMP or MLD Snooping with EVPN-MPLS
-
- play_arrow EVPN E-LAN Services
- play_arrow EVPN-VPWS
- play_arrow Configuring VPWS Service with EVPN Mechanisms
- Overview of VPWS with EVPN Signaling Mechanisms
- Control word for EVPN-VPWS
- Overview of Flexible Cross-Connect Support on VPWS with EVPN
- Overview of Headend Termination for EVPN VPWS for Business Services
- Configuring VPWS with EVPN Signaling Mechanisms
- Example: Configuring VPWS with EVPN Signaling Mechanisms
- FAT Flow Labels in EVPN-VPWS Routing Instances
- Configuring EVPN-VPWS over SRv6
- Configuring Micro-SIDs in EVPN-VPWS
-
- play_arrow EVPN-ETREE
- play_arrow Overview
- play_arrow Configuring EVPN-ETREE
-
- play_arrow Using EVPN for Interconnection
- play_arrow Interconnecting VXLAN Data Centers With EVPN
- play_arrow Interconnecting EVPN-VXLAN Data Centers Through an EVPN-MPLS WAN
- play_arrow Extending a Junos Fusion Enterprise Using EVPN-MPLS
-
- play_arrow PBB-EVPN
- play_arrow Configuring PBB-EVPN Integration
- play_arrow Configuring MAC Pinning for PBB-EVPNs
-
- play_arrow EVPN Standards
- play_arrow Supported EVPN Standards
-
- play_arrow VXLAN-Only Features
- play_arrow Flexible VXLAN Tunnels
- play_arrow Static VXLAN
-
- play_arrow Configuration Statements and Operational Commands
Configuring the number of SMET Nexthops
Junos OS uses EVPN route type 6, selective multicast Ethernet (SMET) route message to support the following:
External multicast sender (IGMP proxy)—EVPN route type 6 messages are used within the EVPN network. The ingress PE device translates the IGMP message to an EVPN route type 6 message and the egress PE device translates the EVPN route type 6 message back to an IGMP message.
Inter-VLAN multicast—EVPN type route 6 messages are used to create a PIM states on a PE device with an IRB interface. This allows multicast traffic to be sent across VLANs.
Selective multicast forwarding—The EVPN route type 6 messages are used to distribute the routing information indicating a PE device’s interest for a multicast group.
The information in the EVPN route type 6 message are used to
build a list of SMET next hops, which can be used to selectively replicate
and forward multicast packets. SMET next hop is a list of outgoing
interfaces (OIFs) identifying the interested PEs . Multicast groups
are mapped to SMET next hops. If multicast groups that have the same
set of interested PEs, they can share a SMET next hop. The number
of SMET nexthops defaults to 10,000 and can be increased by configuring
the smet-nexthop-limit
option. When a device reaches
the SMET nexthop limit, the device will start using inclusive multicast
forwarding for multicast traffic.
Devices in the network that do not support snooping or cannot send EVPN route type 6 messages are always included in the SMET next hop. This ensures those devices that do not support EVPN type 6 messages will be able to receive multicast traffic.
To configure the number of SMET nexthops, you can use the following statement:
User@PE1# set forwarding-options multicast-replication
evpn smet-nexthop-limit nexthop range
.
In some cases, you may want to bypass selective multicast forwarding and send multicast traffic to all devices. If you wish to send multicast traffic to a group, you can list the multicast group address with the following statement
User@PE1# set multicast-snooping-options flood-groups
[ip-addresses]
OSPF messages, which use multicast addresses for communication, are automatically included in the multicast snooping forwarding table.