Help us improve your experience.

Let us know what you think.

Do you have time for a two-minute survey?

 
 

Calculating Power Budget and Power Margin for Fiber-Optic Cables

Use the information in this topic and the specifications for your optical interface to calculate the power budget and power margin for fiber-optic cables.

Tip:

You can use the Hardware Compatibility Tool to find information about the pluggable transceivers supported on your Juniper Networks device.

To calculate the power budget and power margin, perform the following tasks:

Calculate Power Budget for Fiber-Optic Cables

To ensure that fiber-optic connections have sufficient power for correct operation, you need to calculate the link's power budget (PB), which is the maximum amount of power it can transmit. When you calculate the power budget, you use a worst-case analysis to provide a margin of error, even though all the parts of an actual system do not operate at the worst-case levels. To calculate the worst-case estimate of PB, you assume minimum transmitter power (PT) and minimum receiver sensitivity (PR):

PB = PT – PR

The following hypothetical power budget equation uses values measured in decibels (dB) and decibels referred to one milliwatt (dBm):

PB = PT – PR

PB = –15 dBm – (–28 dBm)

PB = 13 dB

How to Calculate Power Margin for Fiber-Optic Cables

After calculating a link's PB, you can calculate the power margin (PM), which represents the amount of power available after subtracting attenuation or link loss (LL) from the PB) A worst-case estimate of PM assumes maximum LL:

PM = PB – LL

PM greater than zero indicates that the power budget is sufficient to operate the receiver.

Factors that can cause link loss include higher-order mode losses, modal and chromatic dispersion, connectors, splices, and fiber attenuation. Table 1 lists an estimated amount of loss for the factors used in the following sample calculations. For information about the actual amount of signal loss caused by equipment and other factors, refer to vendor documentation.

The following sample calculation for a 2-km-long multimode link with a PB of 13 dB uses the estimated values from Table 1. This example calculates LL as the sum of fiber attenuation (2 km @ 1 dB/km, or 2 dB) and loss for five connectors (0.5 dB per connector, or 2.5 dB) and two splices (0.5 dB per splice, or 1 dB) as well as higher-order mode losses (0.5 dB). The PM is calculated as follows:

PM = PB – LL

PM = 13 dB – 2 km (1 dB/km) – 5 (0.5 dB) – 2 (0.5 dB) – 0.5 dB

PM = 13 dB – 2 dB – 2.5 dB – 1 dB – 0.5 dB

PM = 7 dB

The following sample calculation for an 8-km-long single-mode link with a PB of 13 dB uses the estimated values from Table 1. This example calculates LL as the sum of fiber attenuation (8 km @ 0.5 dB/km, or 4 dB) and loss for seven connectors (0.5 dB per connector, or 3.5 dB). The pPM is calculated as follows:

PM = PB – LL

PM = 13 dB – 8 km (0.5 dB/km) – 7(0.5 dB)

PM = 13 dB – 4 dB – 3.5 dB

PM = 5.5 dB

In both the examples, the calculated PM is greater than zero, indicating that the link has sufficient power for transmission and does not exceed the maximum receiver input power.