- play_arrow Overview
- play_arrow Working with Connectivity Services Director
- Connectivity Services Overview
- Getting Started with Connectivity Services Director
- Connectivity Services Director REST API Overview
- Understanding the Need for Connectivity Services Director for Managing Services
- Benefits of a Unified User Interface for Routing and Tunnel Services with Connectivity Services Director
- Connectivity Services Director Overview
- Understanding the Connectivity Services Director User Interface
- Understanding the Usage and Layout of Connectivity Services Director Views and Tasks
- Understanding Task Categories in Connectivity Services Director
- Understanding Connectivity Services Director User Administration
- Logging In to Connectivity Services Director
- Accessing the Services Activation Director GUI
- Changing Your Password for Connectivity Services Director
- Logging Out of Connectivity Services Director
- Getting Started Assistant Overview in Services Activation Director
- play_arrow Service View Tasks and Lifecycle Modes
- Understanding the Service View Tasks Pane in Build Mode
- Understanding the Service View Tasks Pane in Deploy Mode
- Understanding the Service View Tasks Pane in Monitor Mode
- Understanding the Service View Tasks Pane in Fault Mode
- About Build Mode in Service View of Connectivity Services Director
- About Deploy Mode in Service View of Connectivity Services Director
- About Fault Mode in All Views of Connectivity Services Director
- About Monitor Mode in Service View of Connectivity Services Director
- play_arrow Network Services Overview
- Getting Started with Connectivity Services Director
- Prestaging Devices Overview
- Junos Space Layer 2 Services Overview
- Junos Space Layer 3 Services Overview
- Provisioning Process Overview
- Seamless MPLS Support in Junos Space Overview
- Service Attributes Overview
- Service Order States and Service States Overview
- Understanding VLAN Manipulation (Normalization and VLAN Mapping) on Ethernet Services
- VLAN Pool Profiles Overview
- Redundant Pseudowires for Layer 2 Circuits and VPLS
- VPLS over GRE Overview
- Junos Space Network Topology Overview
- Service Recovery Overview
- Multicast L3VPN Overview
- Multi-Chassis Automatic Protection Switching Overview
- Inverse Multiplexing for ATM Overview
- Rendezvous Point
- Understanding Multicast Rendezvous Points, Shared Trees, and Rendezvous-Point Trees
- Understanding PIM Sparse Mode
- Configuring Shared-Tree Data Distribution Across Provider Cores for Providers of MBGP MVPNs
- Configuring SPT-Only Mode for Multiprotocol BGP-Based Multicast VPNs
- Configuring VRF Route Targets for Routing Instances for an MBGP MVPN
- Static Pseudowire Provisioning for VPLS Services
-
- play_arrow Getting Started With Connectivity Services Director
- play_arrow Understanding Connectivity Services Director System Administration and Preferences
-
- play_arrow Working with the Dashboard
- play_arrow About the Dashboard
- play_arrow Using the Dashboard
- play_arrow Dashboard Widget Reference
-
- play_arrow Working in Build Mode
- play_arrow About Build Mode
- play_arrow Discovering Devices
- play_arrow Creating Custom Device Groups
- play_arrow Configuring Quick Templates
- play_arrow Configuring Device Settings
- play_arrow Configuring Class of Service (CoS)
- play_arrow Configuring Link Aggregation Groups (LAGs)
- play_arrow Managing Network Devices
- Viewing the Device Inventory Page in Device View of Connectivity Services Director
- Viewing the Physical Inventory of Devices
- Viewing Licenses With Connectivity Services Director
- Viewing a Device's Current Configuration from Connectivity Services Director
- Accessing a Device’s CLI from Connectivity Services Director
- Accessing a Device’s Web-Based Interface from Connectivity Services Director
- Deleting Devices
- Rebooting Devices
-
- play_arrow Building a Topology View of the Network
- play_arrow Downloading and Installing CSD-Topology
- CSD-Topology Installation and Configuration Overview
- Installation Prerequisites
- Installing the CSD-Topology Software Using the RPM Bundle
- Minimum Hardware and Software Requirements for Junos VM on VMWare
- Installing the JunosVM for CSD-Topology
- Connecting an x86 Server to the Network
- Interactive Method of Installing the RPM Image and CSD-Topology Software from a USB or DVD Drive
- play_arrow Configuring Topology Acquisition and Connectivity Between the CSD-Topology and Path Computation Clients
- play_arrow Accessing the Topology View of CSD-Topology
- Understanding the Network Topology in Connectivity Services Director
- Monitoring the Topology of Network Elements Managed by CSD-Topology Overview
- Specifying Topology Preferences
- CSD-Topology Topology Map Window Overview
- Working with the Graphical Image in the Topology View Window
- Expanding and Collapsing Groups by Using the Topology Map Grouping Shortcut Menu
- Filtering Links, LSPs, and Services by Using the Topology Map Node Shortcut Menu
- Removing the Highlighted LSPs by Using the Topology Map LSPs Shortcut Menu
- Viewing the Service Path by Using the Topology Map Service Shortcut Menu
- Filtering Devices, LSPs, and Services for Sorting and Segregating the Topology View
- Segregating the Displayed Devices by Searching the Entire Topology View
- Resynchronizing the Topology View
- Viewing Device Details of a CSD-Topology for Examining Traffic Transmission
- Viewing LSP Details of a CSD-Topology for Analyzing Network Changes
- Viewing Link Details of a CSD-Topology for Determining the Operational Status
- Viewing Service Details of a CSD-Topology for Monitoring and Troubleshooting Service Parameters
- Viewing Topology Map Group Details in a Pop-Up Dialog Box
- Viewing Topology Map Device Details in a Pop-Up Dialog Box
- Viewing Topology Map Link Details in a Pop-Up Dialog Box
- Viewing Topology Map LSP Details in a Pop-Up Dialog Box
- Viewing Topology Map Service Details in a Pop-Up Dialog Box
- Enabling the Collection of LSP and Service Association Details
- Using Custom Grouping for Devices in a CSD Topology
- Viewing Generated Alarms for Services in the Topology View
- Viewing the Optical Link Details for Examining the Performance of Optical Links
-
- play_arrow Prestaging
- play_arrow Prestaging Devices Overview
- Prestaging Devices Process Overview
- Prestaging Workflow in Connectivity Services Director
- Prerequisites for Prestaging Devices in Connectivity Services Director
- Discovering and Assigning All N-PE Devices
- Discovering and Assigning N-PE Devices with Exceptions
- Prestaging ATM and TDM Pseudowire Devices
- Discovering and Assigning Provider Role or LSP Role for Devices with Exceptions
- Discovering and Assigning All Provider or LSP Devices
- Prestaging Rules
- play_arrow Prestaging: Managing Devices and Device Roles
- Discovering Tunnel Devices
- Adding a UNI
- Unassigning Device Roles
- Deleting UNIs
- Discovering Device Roles
- Excluding Devices from N-PE Role Assignment
- Excluding Interfaces from UNI Role Assignments
- Unassigning N-PE Devices
- Viewing N-PE Devices
- Viewing Prestaging Statistics
- Viewing Prestaging Rules
- Managing Prestage Device Jobs
- Specifying the Wait and Idle Times for Prestaging Devices
- play_arrow Prestaging: Managing IP Addresses
- play_arrow Device Configuration Prerequisites to Prestaging Examples
- play_arrow Prestaging Services
- Creating and Handling a Service Recovery Request
- Selecting a Service Definition in the Wizard for Creating a Service Recovery Request
- Specifying Devices and Filters in the Wizard for Creating a Service Recovery Request
- Reviewing the Configured Settings in the Wizard for Creating a Service Recovery Request
- Viewing Service Recovery Report
- Performing a Service Recovery on a Defined Service
- Processing of Device Change Notifications Overview
- Handling of Out-of-Band Notifications for Service Recovery
- Viewing Service Recovery Instance Details
- Managing Out-of-Band Notifications for Recovered Services
- Viewing Details of an Out-of-Band Notification for Recovered Services
- Viewing Services Rejected During a Service Recovery
- Viewing Service Recovery Jobs
- Performing a Configuration Audit for Recovered Services
- Viewing Configuration Audit Results of Recovered Services
- Recovering Modifications and Deletions Performed for Existing Endpoints
- REST API Changes in Connectivity Services Director for Service Recovery
- Sample XPath Notifications Received on Devices for Deleted Endpoints
- Sample XPath Notifications Received on Devices for a Modified E-LAN Service
- Sample XPath Notifications Received on Devices for a Created E-LAN Service
- Sample XPath Notifications Received on Devices for a Created IP Service
- Sample XPath Notifications Received on Devices for a Created E-Line Service
- Sample XPath Notifications Received on Devices for CFM Profiles Associated with an E-Line Service
- Sample XPath Notifications Received on Devices for CoS Profiles Associated with an E-Line Service
-
- play_arrow Service Design: Working with Service Definitions
- play_arrow Service Design: Predefined Service Definitions
- play_arrow Service Design: Managing E-Line Service Definitions
- Choosing a Predefined Service Definition or Creating a New Service Definition
- Creating an E-Line ATM or TDM Pseudowire Service Definition
- Creating a Multisegment Pseudowire Service Definition
- Modifying a Custom Service Definition
- Publishing a Custom Service Definition
- Unpublishing a Custom Service Definition
- Deleting a Customized Service Definition
- Viewing Service Definitions
- play_arrow Service Design: Managing E-LAN Service Definitions
- play_arrow Service Design: Managing IP Service Definitions
-
- play_arrow Service Provisioning: Working with Customers
- play_arrow Service Provisioning: Managing Customers
-
- play_arrow Working in Deploy Mode
- play_arrow About Deploy Mode
- play_arrow Deploying and Managing Device Configurations
- Deploying Configuration to Devices
- Managing Configuration Deployment Jobs
- Deploy Configuration Window
- Approving Change Requests
- Enabling SNMP Categories and Setting Trap Destinations
- Understanding Resynchronization of Device Configuration
- Resynchronizing Device Configuration
- Managing Device Configuration Files
- Enabling or Disabling Network Ports on Routers
- play_arrow Deploying and Managing Software Images
-
- play_arrow Service Provisioning: Working with Service Orders
- play_arrow Service Provisioning: Viewing the Configured Services and Service Orders
- play_arrow Service Provisioning: Managing E-Line Service Orders
- Creating a Service Order
- Creating an E-Line ATM or TDM Pseudowire Service Order
- Creating an E-Line Multisegment Pseudowire Service Order
- Creating an E-Line Service Order
- Creating a Bulk-Provisioning Service Order for Pseudowire Services
- Creating an Inverse Multiplexing for ATM Service Order
- Provisioning a Single-Ended E-Line Service
- Selecting Specific LSPs for Connectivity Services
- Stitching Two E-Line Pseudowires
- Creating and Deploying a Multisegment Pseudowire
- Deactivating a Service
- Reactivating a Service
- Force-Deploying a Service
- Recovering a Service Definition through Force Upload
- Decommissioning a Service
- Viewing Alarms for a Service
- Inline Editing of E-LAN and IP Service Orders
- Interconnecting an IP Service with an E-LAN Service
- Changing the Logical Loopback Interface for Provisioning
- play_arrow Service Provisioning: Managing E-LAN Service Orders
- play_arrow Service Provisioning: Managing IP Service Orders
- Stitching a Pseudowire to an IP Service
- Creating a Full Mesh IP Service Order
- Creating a Hub-and-Spoke IP Service Order
- Selecting a Published IP Service Definition for a Service Order
- Entering IP Service Order Information
- Selecting Endpoint PE Devices or Nodes
- Creating a Service Order Based on a Service Definition with a Template
- Deploying an IP Service Order
- Creating a Multicast VPN Service Order
- Creating Policies for an IP Service
- play_arrow Service Provisioning: Performing RFC 2544 Benchmark Testing
-
- play_arrow Service Provisioning: Working with Services Deployment
- play_arrow Service Provisioning: Managing Deployed Services
- Managing Service Configuration Deployment Jobs
- Deploying Services Configuration to Devices
- Deploy Configuration Window
- Deleting a Partial Configuration of an LSP Service Order
- Deleting a Service Order
- Deploying a Service
- Validating the Pending Configuration of a Service Order
- Viewing the Configuration of a Pending Service Order
- Viewing Decommissioned E-Line, E-LAN, and IP Service Orders
- Modifying an E-Line Service
- Modifying a Multipoint-to-Multipoint Ethernet Service
- Modifying a Point-to-Multipoint Ethernet Service
- Modifying a Hub-and-Spoke IP Service Order
- Modifying a Full Mesh IP Service
- Understanding Service Validation
- Highlighting of Endpoints in the IP, RSVP LSP, and E-LAN Service Modification Wizards
-
- play_arrow Auditing Services and Viewing Audit Results
- play_arrow Service Provisioning: Auditing Services
- Performing a Functional Audit
- Performing a Configuration Audit
- Troubleshooting N-PE Devices Before Provisioning a Service
- Modifying the Application Settings of Connectivity Services Director
- Troubleshooting the Endpoints of Services
- Basic Requirements of Operational Scripts
- Viewing Configuration Audit Results
- Viewing Functional Audit Results
- Viewing Functional Audit Results for an Inverse Multiplexing for ATM Service
- Modifying a Saved Service Order
- Viewing Service-Level Alarms
- play_arrow Troubleshooting Devices and Services
-
- play_arrow Working in Monitor Mode
- play_arrow About Monitor Mode
- play_arrow Monitoring Traffic
- play_arrow Monitoring Devices
- play_arrow General Monitoring
- play_arrow Monitor Reference
- Error Trend Monitor
- Equipment Status Summary Monitor
- Equipment Summary By Type Monitor
- Port Status Monitor
- Port Utilization Monitor
- Status Monitor for Routers
- Traffic Trend Monitor
- Unicast vs Broadcast/Multicast Monitor
- Unicast vs Broadcast/Multicast Trend Monitor
- Session Trends Monitor
- Current Sessions by Type Monitor
- User Session Details Window
- Current Active Alarms Monitor (All Views Except Service View)
- Top Sessions by MAC Address Monitor
- Top APs by Session Monitor
- Radio Technology Type Statistics Monitor
- Top Talker - Wired Devices Monitor
- Top Users Monitor
- Top APs by Traffic Monitor
- Top Talker - Wireless Devices Monitor
- RF Interference Sources Monitor for Devices
- play_arrow Detecting and Examining the Health and Performance of Services
- Service Monitoring Capabilities in Connectivity Services Director
- Computation of Statistics Polled from Devices for Display in Widgets on Monitoring Pages
- Configuring the Aggregation Method for Viewing Monitoring Details
- Viewing the Service Monitoring Summary Page for a Consolidated Listing of Services
- Monitoring the Service Summary Details of E-Line Services for Optimal Debugging
- Monitoring the Service Summary Details of E-LAN Services for Optimal Debugging
- Monitoring the Service Summary Details of IP Services for Optimal Debugging
- Monitoring the Service Traffic Statistics of E-Line Services for Correlating Device Counters
- Monitoring the Service Traffic Statistics of E-LAN Services for Correlating Device Counters
- Monitoring the Service Traffic Statistics of IP Services for Correlating Device Counters
- Monitoring the Service Transport Details of E-Line Services for Easy Analysis
- Monitoring the Service Transport Details of E-LAN Services for Easy Analysis
- Monitoring the Service Transport Details of IP Services for Easy Analysis
- Viewing Y.1731 Performance Monitoring Statistics for E-Line Services
- Viewing Y.1731 Performance Monitoring Statistics for E-LAN Services
- Using Print Page
- Clearing Interface Statistics
- Viewing MAC Table Details
- Viewing Interface Statistics
- Viewing Interface Status Details
- MPLS Connectivity Verification and Troubleshooting Methods
- Using MPLS Ping
- Pinging VPNs, VPLS, and Layer 2 Circuits
- Monitoring Network Reachability by Using the MPLS Ping Capability
- Monitoring Network Reachability by Using the Layer 3 VPN Ping Capability
- Routing Table Overview
- Viewing Routing Table Details
-
- play_arrow Working in Fault Mode
- play_arrow About Fault Mode
- play_arrow Using Fault Mode
- play_arrow Fault Reference
- Alarm Detail Monitor (All Views Except Service View)
- Alarm Detail Monitor (Service View)
- Current Active Alarms Monitor (Service View)
- Alarms by Category Monitor
- Alarms by Severity Monitor (Service View)
- Alarms by State Monitor
- Alarm Trend Monitor (Service View)
- Alarms by Severity Monitor (All Views Except Service View)
- Alarms by State Monitor (All Views Except Service View)
- Current Active Alarms Monitor (All Views Except Service View)
- Alarm Trend Monitor (All Views Except Service View)
-
- play_arrow End-to-End Configuration Examples
- play_arrow Working with Chassis View
- play_arrow Working with Devices
- play_arrow Managing CLI Configlets
-
- play_arrow Working with User Roles
- play_arrow Managing User Roles
-
- play_arrow Working with Tunnel Services
- play_arrow Tunnel Services Overview
- Tunnel Services Overview
- Traffic Engineering Capabilities
- Components of Traffic Engineering
- Routers in an LSP
- MPLS and RSVP Overview
- Fast Reroute Overview
- Point-to-Multipoint LSPs Overview
- RSVP Operation Overview
- Link Protection and Node Protection
- Connectivity Services Director–NorthStar Controller Integration Overview
- play_arrow Service Design and Provisioning: Managing and Deploying Tunnel Services
- Managing Devices and Tunnel Services Overview
- Discovering Tunnel Devices
- Creating an LSP Service Definition
- Creating an LSP Service Order
- Creating Public and Private LSPs
- Viewing the Configured LSP Services
- Modifying an Explicit Path in RSVP LSP Services
- Modifying an RSVP LSP Service
- Viewing LSP Services in Deploy Mode
- Viewing LSP Service Orders in a Table
- Deactivating an LSP Service
- Reactivating an LSP Service
- Force-Deploying an LSP Service
- Cloning an LSP Service
- Viewing Alarms for an LSP Service
- Managing Deployment of LSP Services Configuration to Devices
- Deploying an LSP Service
- Deleting a Partial Configuration of an LSP Service Order
- Deleting an LSP Service Order
- Validating the Pending Configuration of an LSP Service Order
- Viewing the Configuration of a Pending LSP Service Order
- Viewing the Configuration Details of RSVP LSP Services
- Viewing Decommissioned LSP Service Orders
- play_arrow Monitoring and Troubleshooting Tunnel Services
- Performing a Functional Audit for LSP Services
- Viewing Functional Audit Results for LSP Services
- Examining the LSP Summary Details for Effective Troubleshooting
- Troubleshooting the Endpoints of RSVP LSP Services
- Clearing LSP Statistics
- Monitoring Network Reachability by Using the MPLS Traceroute Capability
- Monitoring Network Reachability by Using the MPLS Ping Capability for RSVP LSPs
-
- play_arrow Appendix: Managing Network Activate Features Using the Older Version of Services Activation Director
- play_arrow Service Design: Working with E-Line, IP, and E-LAN Service Templates
- Service Templates Overview
- Service Templates Workflow
- Applying a Service Template to a Service Definition
- Creating a Service Template
- Deleting a Service Template
- Exporting a Service Template
- Finding Configuration Options
- Importing a Service Template
- Modifying a Service Template
- Specifying Service-Specific Values
- User Privileges in Service Templates
- Provisioning Dynamic Attributes to Specify the Device XPath
- Viewing Service Template Inventory
- play_arrow Service Provisioning: Working with Threshold Alarm Profiles
-
IPLC Architecture and Functional Components Overview
This topic provides an operational and configuration overview of the IPLC.
Architecture Overview
The IPLC base module accepts and then multiplexes 32 individual wavelengths (connected through the ADD and DROP ports on the front panel) into a single fiber pair. If you require more than 32 channels, you can connect the optional IPLC expansion module to the IPLC base module to increase the port capacity of the node to 64 ports.
The wavelengths from the ADD and DROP ports are then amplified, monitored, and controlled and then transmitted towards the optical network over the Line OUT port on front panelof the IPLC base module. In the reverse direction, the received signals from the optical network on the Line IN port are amplified to overcome for loss in the optical fiber and then demultiplexed into individual wavelengths and sent to the configured ADD and DROP ports on the front panel.
The 32 channels provided by the IPLC base module are known as the odd channels. The 32 channels provided by the optional IPLC expansion module are known as the even channels. This odd and even designation reflects the default wavelengths the channels support.
In the multiplexing-add path, the 32 even channels from the IPLC expansion module are interleaved with the 32 odd channels from the IPLC base module. In the demultiplexing-drop path, the 32 even channels are separated from the odd channels using a deinterleaver. All 64 channels go through the main common components used for amplification and equalization. All 32 channels on the IPLC base module are 100 GHz spaced, per the ITU-T Grid Specifications (G.694.1). The 32 channels on the IPLC expansion module are offset from the IPLC base module channels by 50 Hz.
Single Node Two Optical Line Terminations
The IPLC architecture can also support two-line terminations on a single node. To form a single node that supports two-line terminations, simply connect two IPLC base modules together through the PT IN-PT OUT ports on the front panel and entering a few simple configuration statements in the Junos OS CLI. The IPLC base module and the expansion module each require a single FPC or PIC chassis slot. This minimizes slot requirements and ensures shelf capacity is not sacrificed in single-node east-west or north-south configurations. These minimal slot requirements are especially important if you are configuring a single-node, two-line termination that requires 64 channels using the IPLC expansion modules.
The IPLC base module supports 32 dense wavelength division multiplexing (DWDM) channels. Using the IPLC expansion module, you can increase the number of supported DWDM channels to 64.
Functional Component Overview
The high-level optical functional block diagram of the combined functions of both the IPLC base module and the IPLC expansion module are shown in Figure 1.

IPLC Base Module Functional Components
The main building blocks of the IPLC base module architecture are as follows:
A 2x1 WSS on the add path to select wavelengths from among all channels presented from the 32 add ports of the IPLC base module (shown in blue in Figure 1) and from the 32 add ports on the IPLC expansion module (shown in gray in Figure 1).
A booster erbium-doped fiber amplifier (EDFA) (E1) followed by a variable optical attenuator (VOA) to compensate for the loss of the WSS, multiplexer, and 3 dB coupler.
A variable gain preamplifier EDFA (E2) to compensate for the loss of the preceding fiber span.
An optical channel monitor (OCM) with three points of observation including the following:
Booster EDFA (E1) output
Preamplifier EDFA (E2) output
The combined channels of the local add function at the input of the WSS, which indicates which channels (both odd and even channels) are being added locally
An optical supervisory channel (OSC), which communicates inband with the far end IPLC modules and is used for the analysis of the fiber span characteristics, performance monitoring, and IPLC fault handing. Simple topology discovery logic communicates with the ILAs and PTX3000 nodes.
An optical splitter is used to broadcast the received signal from the output of the preamplifier (E2) toward both DROP and PT IN and PT OUT ports
Four power monitors:
AWG Add—Monitors the input of the WSS measuring the total input power of the combined channels of the local add function
Express In—Monitors the input of the WSS measuring the total input power at the input to the WSS coming from the PT IN and PT OUT express ports
Line IN—Monitors the input at the Line IN port, for detection of the incoming line signal optical power
Line OUT—Monitors the output at the Line OUT port, for detection of the outgoing line signal optical power
IPLC Expansion Module Functional Components
The IPLC expansion module is a passive multiplexer/demultiplexer that interfaces only with the IPLC base module. The IPLC expansion module receives its sole input from and delivers its sole output to the IPLC base module through the PT IN and PT OUT ports. As such, it does not interface directly with the network or the high-speed backplane of the PTX3000 router. Figure 1 shows the main building blocks for both the IPLC base module and expansion module.
The main building blocks of the IPLC expansion module architecture are as follows:
Add filter capable of multiplexing 32 DWDM channels of certain wavelengths
Drop filter capable of demultiplexing 32 DWDM channels having the same certain wavelengths
Demultiplexing filter whose input (which is also the sole input to the expansion module) is monitored through a power detector. The power detector determines whether light is present. If light is present, the power detector determines whether the light has reached the expansion module through the patch cord between the IPLC base module and the IPLC expansion module.