- play_arrow Overview
- play_arrow Working with Connectivity Services Director
- Connectivity Services Overview
- Getting Started with Connectivity Services Director
- Connectivity Services Director REST API Overview
- Understanding the Need for Connectivity Services Director for Managing Services
- Benefits of a Unified User Interface for Routing and Tunnel Services with Connectivity Services Director
- Connectivity Services Director Overview
- Understanding the Connectivity Services Director User Interface
- Understanding the Usage and Layout of Connectivity Services Director Views and Tasks
- Understanding Task Categories in Connectivity Services Director
- Understanding Connectivity Services Director User Administration
- Logging In to Connectivity Services Director
- Accessing the Services Activation Director GUI
- Changing Your Password for Connectivity Services Director
- Logging Out of Connectivity Services Director
- Getting Started Assistant Overview in Services Activation Director
- play_arrow Service View Tasks and Lifecycle Modes
- Understanding the Service View Tasks Pane in Build Mode
- Understanding the Service View Tasks Pane in Deploy Mode
- Understanding the Service View Tasks Pane in Monitor Mode
- Understanding the Service View Tasks Pane in Fault Mode
- About Build Mode in Service View of Connectivity Services Director
- About Deploy Mode in Service View of Connectivity Services Director
- About Fault Mode in All Views of Connectivity Services Director
- About Monitor Mode in Service View of Connectivity Services Director
- play_arrow Network Services Overview
- Getting Started with Connectivity Services Director
- Prestaging Devices Overview
- Junos Space Layer 2 Services Overview
- Junos Space Layer 3 Services Overview
- Provisioning Process Overview
- Seamless MPLS Support in Junos Space Overview
- Service Attributes Overview
- Service Order States and Service States Overview
- Understanding VLAN Manipulation (Normalization and VLAN Mapping) on Ethernet Services
- VLAN Pool Profiles Overview
- Redundant Pseudowires for Layer 2 Circuits and VPLS
- VPLS over GRE Overview
- Junos Space Network Topology Overview
- Service Recovery Overview
- Multicast L3VPN Overview
- Multi-Chassis Automatic Protection Switching Overview
- Inverse Multiplexing for ATM Overview
- Rendezvous Point
- Understanding Multicast Rendezvous Points, Shared Trees, and Rendezvous-Point Trees
- Understanding PIM Sparse Mode
- Configuring Shared-Tree Data Distribution Across Provider Cores for Providers of MBGP MVPNs
- Configuring SPT-Only Mode for Multiprotocol BGP-Based Multicast VPNs
- Configuring VRF Route Targets for Routing Instances for an MBGP MVPN
- Static Pseudowire Provisioning for VPLS Services
-
- play_arrow Getting Started With Connectivity Services Director
- play_arrow Understanding Connectivity Services Director System Administration and Preferences
-
- play_arrow Working with the Dashboard
- play_arrow About the Dashboard
- play_arrow Using the Dashboard
- play_arrow Dashboard Widget Reference
-
- play_arrow Working in Build Mode
- play_arrow About Build Mode
- play_arrow Discovering Devices
- play_arrow Creating Custom Device Groups
- play_arrow Configuring Quick Templates
- play_arrow Configuring Device Settings
- play_arrow Configuring Class of Service (CoS)
- play_arrow Configuring Link Aggregation Groups (LAGs)
- play_arrow Managing Network Devices
- Viewing the Device Inventory Page in Device View of Connectivity Services Director
- Viewing the Physical Inventory of Devices
- Viewing Licenses With Connectivity Services Director
- Viewing a Device's Current Configuration from Connectivity Services Director
- Accessing a Device’s CLI from Connectivity Services Director
- Accessing a Device’s Web-Based Interface from Connectivity Services Director
- Deleting Devices
- Rebooting Devices
-
- play_arrow Building a Topology View of the Network
- play_arrow Downloading and Installing CSD-Topology
- CSD-Topology Installation and Configuration Overview
- Installation Prerequisites
- Installing the CSD-Topology Software Using the RPM Bundle
- Minimum Hardware and Software Requirements for Junos VM on VMWare
- Installing the JunosVM for CSD-Topology
- Connecting an x86 Server to the Network
- Interactive Method of Installing the RPM Image and CSD-Topology Software from a USB or DVD Drive
- play_arrow Configuring Topology Acquisition and Connectivity Between the CSD-Topology and Path Computation Clients
- play_arrow Accessing the Topology View of CSD-Topology
- Understanding the Network Topology in Connectivity Services Director
- Monitoring the Topology of Network Elements Managed by CSD-Topology Overview
- Specifying Topology Preferences
- CSD-Topology Topology Map Window Overview
- Working with the Graphical Image in the Topology View Window
- Expanding and Collapsing Groups by Using the Topology Map Grouping Shortcut Menu
- Filtering Links, LSPs, and Services by Using the Topology Map Node Shortcut Menu
- Removing the Highlighted LSPs by Using the Topology Map LSPs Shortcut Menu
- Viewing the Service Path by Using the Topology Map Service Shortcut Menu
- Filtering Devices, LSPs, and Services for Sorting and Segregating the Topology View
- Segregating the Displayed Devices by Searching the Entire Topology View
- Resynchronizing the Topology View
- Viewing Device Details of a CSD-Topology for Examining Traffic Transmission
- Viewing LSP Details of a CSD-Topology for Analyzing Network Changes
- Viewing Link Details of a CSD-Topology for Determining the Operational Status
- Viewing Service Details of a CSD-Topology for Monitoring and Troubleshooting Service Parameters
- Viewing Topology Map Group Details in a Pop-Up Dialog Box
- Viewing Topology Map Device Details in a Pop-Up Dialog Box
- Viewing Topology Map Link Details in a Pop-Up Dialog Box
- Viewing Topology Map LSP Details in a Pop-Up Dialog Box
- Viewing Topology Map Service Details in a Pop-Up Dialog Box
- Enabling the Collection of LSP and Service Association Details
- Using Custom Grouping for Devices in a CSD Topology
- Viewing Generated Alarms for Services in the Topology View
- Viewing the Optical Link Details for Examining the Performance of Optical Links
-
- play_arrow Prestaging
- play_arrow Prestaging Devices Overview
- Prestaging Devices Process Overview
- Prestaging Workflow in Connectivity Services Director
- Prerequisites for Prestaging Devices in Connectivity Services Director
- Discovering and Assigning All N-PE Devices
- Discovering and Assigning N-PE Devices with Exceptions
- Prestaging ATM and TDM Pseudowire Devices
- Discovering and Assigning Provider Role or LSP Role for Devices with Exceptions
- Discovering and Assigning All Provider or LSP Devices
- Prestaging Rules
- play_arrow Prestaging: Managing Devices and Device Roles
- Discovering Tunnel Devices
- Adding a UNI
- Unassigning Device Roles
- Deleting UNIs
- Discovering Device Roles
- Excluding Devices from N-PE Role Assignment
- Excluding Interfaces from UNI Role Assignments
- Unassigning N-PE Devices
- Viewing N-PE Devices
- Viewing Prestaging Statistics
- Viewing Prestaging Rules
- Managing Prestage Device Jobs
- Specifying the Wait and Idle Times for Prestaging Devices
- play_arrow Prestaging: Managing IP Addresses
- play_arrow Device Configuration Prerequisites to Prestaging Examples
- play_arrow Prestaging Services
- Creating and Handling a Service Recovery Request
- Selecting a Service Definition in the Wizard for Creating a Service Recovery Request
- Specifying Devices and Filters in the Wizard for Creating a Service Recovery Request
- Reviewing the Configured Settings in the Wizard for Creating a Service Recovery Request
- Viewing Service Recovery Report
- Performing a Service Recovery on a Defined Service
- Processing of Device Change Notifications Overview
- Handling of Out-of-Band Notifications for Service Recovery
- Viewing Service Recovery Instance Details
- Managing Out-of-Band Notifications for Recovered Services
- Viewing Details of an Out-of-Band Notification for Recovered Services
- Viewing Services Rejected During a Service Recovery
- Viewing Service Recovery Jobs
- Performing a Configuration Audit for Recovered Services
- Viewing Configuration Audit Results of Recovered Services
- Recovering Modifications and Deletions Performed for Existing Endpoints
- REST API Changes in Connectivity Services Director for Service Recovery
- Sample XPath Notifications Received on Devices for Deleted Endpoints
- Sample XPath Notifications Received on Devices for a Modified E-LAN Service
- Sample XPath Notifications Received on Devices for a Created E-LAN Service
- Sample XPath Notifications Received on Devices for a Created IP Service
- Sample XPath Notifications Received on Devices for a Created E-Line Service
- Sample XPath Notifications Received on Devices for CFM Profiles Associated with an E-Line Service
- Sample XPath Notifications Received on Devices for CoS Profiles Associated with an E-Line Service
-
- play_arrow Service Design: Working with Service Definitions
- play_arrow Service Design: Predefined Service Definitions
- play_arrow Service Design: Managing E-Line Service Definitions
- Choosing a Predefined Service Definition or Creating a New Service Definition
- Creating an E-Line ATM or TDM Pseudowire Service Definition
- Creating a Multisegment Pseudowire Service Definition
- Modifying a Custom Service Definition
- Publishing a Custom Service Definition
- Unpublishing a Custom Service Definition
- Deleting a Customized Service Definition
- Viewing Service Definitions
- play_arrow Service Design: Managing E-LAN Service Definitions
- play_arrow Service Design: Managing IP Service Definitions
-
- play_arrow Service Provisioning: Working with Customers
- play_arrow Service Provisioning: Managing Customers
-
- play_arrow Working in Deploy Mode
- play_arrow About Deploy Mode
- play_arrow Deploying and Managing Device Configurations
- Deploying Configuration to Devices
- Managing Configuration Deployment Jobs
- Deploy Configuration Window
- Approving Change Requests
- Enabling SNMP Categories and Setting Trap Destinations
- Understanding Resynchronization of Device Configuration
- Resynchronizing Device Configuration
- Managing Device Configuration Files
- Enabling or Disabling Network Ports on Routers
- play_arrow Deploying and Managing Software Images
-
- play_arrow Service Provisioning: Working with Service Orders
- play_arrow Service Provisioning: Viewing the Configured Services and Service Orders
- play_arrow Service Provisioning: Managing E-Line Service Orders
- Creating a Service Order
- Creating an E-Line ATM or TDM Pseudowire Service Order
- Creating an E-Line Multisegment Pseudowire Service Order
- Creating an E-Line Service Order
- Creating a Bulk-Provisioning Service Order for Pseudowire Services
- Creating an Inverse Multiplexing for ATM Service Order
- Provisioning a Single-Ended E-Line Service
- Selecting Specific LSPs for Connectivity Services
- Stitching Two E-Line Pseudowires
- Creating and Deploying a Multisegment Pseudowire
- Deactivating a Service
- Reactivating a Service
- Force-Deploying a Service
- Recovering a Service Definition through Force Upload
- Decommissioning a Service
- Viewing Alarms for a Service
- Inline Editing of E-LAN and IP Service Orders
- Interconnecting an IP Service with an E-LAN Service
- Changing the Logical Loopback Interface for Provisioning
- play_arrow Service Provisioning: Managing E-LAN Service Orders
- play_arrow Service Provisioning: Managing IP Service Orders
- Stitching a Pseudowire to an IP Service
- Creating a Full Mesh IP Service Order
- Creating a Hub-and-Spoke IP Service Order
- Selecting a Published IP Service Definition for a Service Order
- Entering IP Service Order Information
- Selecting Endpoint PE Devices or Nodes
- Creating a Service Order Based on a Service Definition with a Template
- Deploying an IP Service Order
- Creating a Multicast VPN Service Order
- Creating Policies for an IP Service
- play_arrow Service Provisioning: Performing RFC 2544 Benchmark Testing
-
- play_arrow Service Provisioning: Working with Services Deployment
- play_arrow Service Provisioning: Managing Deployed Services
- Managing Service Configuration Deployment Jobs
- Deploying Services Configuration to Devices
- Deploy Configuration Window
- Deleting a Partial Configuration of an LSP Service Order
- Deleting a Service Order
- Deploying a Service
- Validating the Pending Configuration of a Service Order
- Viewing the Configuration of a Pending Service Order
- Viewing Decommissioned E-Line, E-LAN, and IP Service Orders
- Modifying an E-Line Service
- Modifying a Multipoint-to-Multipoint Ethernet Service
- Modifying a Point-to-Multipoint Ethernet Service
- Modifying a Hub-and-Spoke IP Service Order
- Modifying a Full Mesh IP Service
- Understanding Service Validation
- Highlighting of Endpoints in the IP, RSVP LSP, and E-LAN Service Modification Wizards
-
- play_arrow Auditing Services and Viewing Audit Results
- play_arrow Service Provisioning: Auditing Services
- Performing a Functional Audit
- Performing a Configuration Audit
- Troubleshooting N-PE Devices Before Provisioning a Service
- Modifying the Application Settings of Connectivity Services Director
- Troubleshooting the Endpoints of Services
- Basic Requirements of Operational Scripts
- Viewing Configuration Audit Results
- Viewing Functional Audit Results
- Viewing Functional Audit Results for an Inverse Multiplexing for ATM Service
- Modifying a Saved Service Order
- Viewing Service-Level Alarms
- play_arrow Troubleshooting Devices and Services
-
- play_arrow Working in Monitor Mode
- play_arrow About Monitor Mode
- play_arrow Monitoring Traffic
- play_arrow Monitoring Devices
- play_arrow General Monitoring
- play_arrow Monitor Reference
- Error Trend Monitor
- Equipment Status Summary Monitor
- Equipment Summary By Type Monitor
- Port Status Monitor
- Port Utilization Monitor
- Status Monitor for Routers
- Traffic Trend Monitor
- Unicast vs Broadcast/Multicast Monitor
- Unicast vs Broadcast/Multicast Trend Monitor
- Session Trends Monitor
- Current Sessions by Type Monitor
- User Session Details Window
- Current Active Alarms Monitor (All Views Except Service View)
- Top Sessions by MAC Address Monitor
- Top APs by Session Monitor
- Radio Technology Type Statistics Monitor
- Top Talker - Wired Devices Monitor
- Top Users Monitor
- Top APs by Traffic Monitor
- Top Talker - Wireless Devices Monitor
- RF Interference Sources Monitor for Devices
- play_arrow Detecting and Examining the Health and Performance of Services
- Service Monitoring Capabilities in Connectivity Services Director
- Computation of Statistics Polled from Devices for Display in Widgets on Monitoring Pages
- Configuring the Aggregation Method for Viewing Monitoring Details
- Viewing the Service Monitoring Summary Page for a Consolidated Listing of Services
- Monitoring the Service Summary Details of E-Line Services for Optimal Debugging
- Monitoring the Service Summary Details of E-LAN Services for Optimal Debugging
- Monitoring the Service Summary Details of IP Services for Optimal Debugging
- Monitoring the Service Traffic Statistics of E-Line Services for Correlating Device Counters
- Monitoring the Service Traffic Statistics of E-LAN Services for Correlating Device Counters
- Monitoring the Service Traffic Statistics of IP Services for Correlating Device Counters
- Monitoring the Service Transport Details of E-Line Services for Easy Analysis
- Monitoring the Service Transport Details of E-LAN Services for Easy Analysis
- Monitoring the Service Transport Details of IP Services for Easy Analysis
- Viewing Y.1731 Performance Monitoring Statistics for E-Line Services
- Viewing Y.1731 Performance Monitoring Statistics for E-LAN Services
- Using Print Page
- Clearing Interface Statistics
- Viewing MAC Table Details
- Viewing Interface Statistics
- Viewing Interface Status Details
- MPLS Connectivity Verification and Troubleshooting Methods
- Using MPLS Ping
- Pinging VPNs, VPLS, and Layer 2 Circuits
- Monitoring Network Reachability by Using the MPLS Ping Capability
- Monitoring Network Reachability by Using the Layer 3 VPN Ping Capability
- Routing Table Overview
- Viewing Routing Table Details
-
- play_arrow Working in Fault Mode
- play_arrow About Fault Mode
- play_arrow Using Fault Mode
- play_arrow Fault Reference
- Alarm Detail Monitor (All Views Except Service View)
- Alarm Detail Monitor (Service View)
- Current Active Alarms Monitor (Service View)
- Alarms by Category Monitor
- Alarms by Severity Monitor (Service View)
- Alarms by State Monitor
- Alarm Trend Monitor (Service View)
- Alarms by Severity Monitor (All Views Except Service View)
- Alarms by State Monitor (All Views Except Service View)
- Current Active Alarms Monitor (All Views Except Service View)
- Alarm Trend Monitor (All Views Except Service View)
-
- play_arrow End-to-End Configuration Examples
- play_arrow Working with Chassis View
- play_arrow Working with Devices
- play_arrow Managing CLI Configlets
-
- play_arrow Managing Optical Interfaces, OTUs, ODUs, ILAs, and IPLCs on MX Series and PTX Series Routers
- play_arrow Overview of Optical Interfaces, OTUs, and ODUs
- Optical Interfaces Management and Monitoring on MX Series and PTX Series Routers Overview
- Ethernet DWDM Interface Wavelength Overview
- Attenuation and Dispersion in a Fiber-Optic Cable on PTX Series Routers Overview
- Understanding Pre-FEC BER Monitoring and BER Thresholds
- DWDM Controllers Overview
- PTX5000 PIC Description
- PTX3000 PIC Description
- 100-Gigabit Ethernet OTN Optical Interface Specifications
- 100-Gigabit DWDM OTN PIC Optical Interface Specifications
- 100-Gigabit DWDM OTN PIC (PTX Series)
- 100-Gigabit Ethernet OTN PIC with CFP2 (PTX Series)
- 100-Gigabit Ethernet PIC with CFP2 (PTX Series)
- 100-Gigabit Ethernet PIC with CFP (PTX Series)
- 100GbE PICs for PTX Series Routers
- P2-10G-40G-QSFPP PIC Overview
- Understanding the P2-100GE-OTN PIC
- 100-Gigabit DWDM OTN PIC with CFP2 (PTX Series)
- 100-Gigabit DWDM OTN MIC with CFP2
- 100-Gigabit Ethernet OTN Options Configuration Overview
- Configuring the 10-Gigabit or 100-Gigabit Ethernet DWDM Interface Wavelength
- play_arrow Overview of Optical ILAs and IPLCs
- Optical ILA Hardware Component Overview
- Optical ILA Cooling System Description
- Optical ILA AC Power Supply Description
- Optical ILA DC Power Supply Description
- Optical ILA Chassis Status LEDs
- Optical ILA Component Redundancy
- Optical ILA Field-Replaceable Units
- Optical ILA Management Panel
- Optical ILA Management Port LEDs
- Optical Inline Amplifier Description
- Optical ILA Power Supply LEDs
- PTX3000 IPLC Description
- IPLC Architecture and Functional Components Overview
- Understanding IPLC Base and Expansion Modules
- Understanding the IPLC Configuration
- PTX3000 IPLC LED
- Communication of SNMP Traps Between Optical ILA and NMS Systems
- Communication of SNMPv2 and SNMPv3 Commands over OSC Between an Optical ILA and NMS
- Overview of Configuring and Managing Optical ILAs from Connectivity Services Director Using DMI
- IPLC Specifications
- Understanding the Performance Monitors and TCAs for IPLCs
- play_arrow Configuring and Monitoring Optical Interfaces, OTUs, and ODUs
- Viewing a Graphical Image of the Optical Interface Components
- Configuring and Managing OTN Port Details of MX Series and PTX Series Routers for Easy Administration
- Configuring and Managing OTU Details of MX Series and PTX Series Routers for Simplified Management
- Configuring and Managing ODU Details of MX Series and PTX Series Routers for Simplified Management
- Configuring and Managing Optical PIC Details for Effective Provisioning
- Configuring Threshold-Crossing Alarms for OTN Ports for Monitoring Link Performance
- Configuring Threshold-Crossing Alarms for OTUs for Monitoring Link Performance
- Configuring Threshold-Crossing Alarms for ODUs for Monitoring Link Performance
- Viewing Performance Monitoring Details of OTN Ports for Detecting and Diagnosing Faults
- Viewing Performance Monitoring Details of OTUs for Detecting and Diagnosing Faults
- Viewing Performance Monitoring Details of ODUs for Detecting and Diagnosing Faults
- Viewing a Graphical Image of the Chassis of PTX Series Routers
- Diagnosing, Examining, and Correcting Optical Interface Problems
- Changing Alarm Settings for the Optics and OTN Interfaces
- play_arrow Configuring and Monitoring Optical Inline Amplifiers
- Viewing a Graphical Image of Optical Inline Amplifier
- Viewing Optical ILA Configuration and Status Details for Simplified Administration
- Viewing Performance Monitoring Details of Optical ILAs for Detecting and Diagnosing Faults
- Configuring Threshold-Crossing Alarms for Optical ILAs for Monitoring Link Performance
- Changing Alarm Settings for the Optical ILAs
- play_arrow Configuring and Monitoring Optical Integrated Photonic Line Cards
- Viewing a Graphical Image of the Optical Integrated Photonic Line Card
- Configuring Optical IPLC for Easy and Optimal Deployment
- Viewing Performance Monitoring Details of Optical IPLCs for Detecting and Diagnosing Faults
- Configuring Threshold-Crossing Alarms for Optical IPLCs for Monitoring Link Performance
- Increasing the Add and Drop Port Capacity of the IPLC Node to 64 Channels
- Configuring a Two-Degree IPLC Node for Express Traffic by Increasing the Line Capacity
- Configuring Optical IPLC Line Connectivity for Interoperation with Optical ILAs
- Configuring the Wavelengths That Are Added and Dropped by the IPLC
- Configuring the IPLC to Add or Drop Wavelengths to an Optical Interface on a Remote Chassis
- Configuring the IPLC to Add or Drop Wavelengths to an Optical Interface on the Same Chassis
- Bypassing a Wavelength on the IPLC
- Changing Alarm Settings for the Optical IPLCs
- Viewing Routing Engine Switchover Indicators in the Chassis Image
- Viewing Alarm Indicators in the Chassis Image
- Viewing Port Statistics for OTN PICs
- Example: Configuring Two Fiber Line Terminations Using IPLCs for Optical Amplification in a Metro Linear Packet Optical Network
-
- play_arrow Working with User Roles
- play_arrow Managing User Roles
-
- play_arrow Appendix: Managing Network Activate Features Using the Older Version of Services Activation Director
- play_arrow Service Design: Working with E-Line, IP, and E-LAN Service Templates
- Service Templates Overview
- Service Templates Workflow
- Applying a Service Template to a Service Definition
- Creating a Service Template
- Deleting a Service Template
- Exporting a Service Template
- Finding Configuration Options
- Importing a Service Template
- Modifying a Service Template
- Specifying Service-Specific Values
- User Privileges in Service Templates
- Provisioning Dynamic Attributes to Specify the Device XPath
- Viewing Service Template Inventory
- play_arrow Service Provisioning: Working with Threshold Alarm Profiles
-
RSVP Operation Overview
A Resource Reservation Protocol (RSVP) label-switched path (LSP) tunnel enables you to send RSVP LSPs inside other RSVP LSPs. This enables a network administrator to provide traffic engineering from one end of the network to the other. A useful application for this feature is to connect customer edge (CE) routers with provider edge (PE) routers by using an RSVP LSP, and then tunnel this edge LSP inside a second RSVP LSP traveling across the network core.
You should have a general understanding of MPLS and label switching concepts. For more information about MPLS, see the Junos MPLS Applications Configuration Guide.
An RSVP LSP tunnel adds the concept of a forwarding adjacency, similar to the one used for generalized Multiprotocol Label Switching (GMPLS).
The forwarding adjacency creates a tunneled path for sending data between peer devices in an RSVP LSP network. Once a forwarding adjacency LSP (FA-LSP) has been established, other LSPs can be sent over the FA-LSP by using Constrained Shortest Path First (CSPF), Link Management Protocol (LMP), Open Shortest Path First (OSPF), and RSVP.
To enable an RSVP LSP tunnel, the Junos OS uses the following mechanisms:
LMP—Originally designed for GMPLS, LMP establishes forwarding adjacencies between RSVP LSP tunnel peers, and maintains and allocates resources for traffic engineering links.
OSPF extensions—OSPF was designed to route packets to physical and logical interfaces related to a Physical Interface Card (PIC). This protocol has been extended to route packets to virtual peer interfaces defined in an LMP configuration.
RSVP-TE extensions—RSVP-TE was designed to signal the setup of packet LSPs to physical interfaces. The protocol has been extended to request path setup for packet LSPs traveling to virtual peer interfaces defined in an LMP configuration.
The following limitations exist for LSP hierarchies:
Circuit cross-connect (CCC)-based LSPs are not supported.
Graceful restart is not supported.
Link protection is not available for FA-LSPs or at the egress point of the forwarding adjacency.
Point-to-multipoint LSPs are not supported across FA-LSPs.
RSVP creates independent sessions to handle each data flow. A session is identified by a combination of the destination address, an optional destination port, and a protocol. Within a session, there can be one or more senders. Each sender is identified by a combination of its source address and source port. An out-of-band mechanism, such as a session announcement protocol or human communication, is used to communicate the session identifier to all senders and receivers.
A typical RSVP session involves the following sequence of events:
A potential sender starts sending RSVP path messages to the session address.
A receiver, wanting to join the session, registers itself if necessary. For example, a receiver in a multicast application would register itself with IGMP.
The receiver receives the path messages.
The receiver sends appropriate Resv messages toward the sender. These messages carry a flow descriptor, which is used by routers along the path to make reservations in their link-layer media.
The sender receives the Resv message and then starts sending application data.
This sequence of events is not necessarily strictly synchronized. For example, receivers can register themselves before receiving path messages from the sender, and application data can flow before the sender receives Resv messages. Application data that is delivered before the actual reservation contained in the Resv message typically is treated as best-effort, non-real-time traffic with no CoS guarantee.
RSVP Hello Packets and Timers
RSVP monitors the status of the interior gateway protocol (IGP) (IS-IS or OSPF) neighbors and relies on the IGP protocols to detect when a node fails. If an IGP protocol declares a neighbor down (because hello packets are no longer being received), RSVP also brings down that neighbor. However, the IGP protocols and RSVP still act independently when bringing a neighbor up.
In the Junos OS, RSVP typically relies on IGP hello packet detection to check for node failures. RSVP sessions are kept up even if RSVP hello packets are no longer being received, so long as the router continues to receive IGP hello packets. RSVP sessions are maintained until either the router stops receiving IGP hello packets or the RSVP Path and Resv messages time out. Configuring a short time for the IS-IS or OSPF hello timers allows these protocols to detect node failures quickly.
RSVP hellos can be relied on when the IGP does not recognize a particular neighbor (for example, if IGP is not enabled on the interface) or if the IGP is RIP (not IS-IS or OSPF). Also, the equipment of other vendors might be configured to monitor RSVP sessions based on RSVP hello packets. This equipment might also take an RSVP session down due to a loss of RSVP hello packets.
We do not recommend configuring a short RSVP hello timer. If quick discovery of a failed neighbor is needed, configure short IGP (OSPF or IS-IS) hello timers.
OSPF and IS-IS have infrastructure to manage rapid hello message sending and receiving reliably, even if the routing protocols or some other process are straining the processing capability of the router. Under the same circumstances, RSVP hellos might time out prematurely even though the neighbor is functioning normally.
RSVP Message Types
RSVP uses the following types of messages to establish and remove paths for data flows, establish and remove reservation information, confirm the establishment of reservations, and report errors:
- Path Messages
- Resv Messages
- PathTear Messages
- ResvTear Messages
- PathErr Messages
- ResvErr Messages
- ResvConfirm Messages
Path Messages
Each sender host transmits path messages downstream along the routes provided by the unicast and multicast routing protocols. Path messages follow the exact paths of application data, creating path states in the routers along the way, thus enabling routers to learn the previous-hop and next-hop node for the session. Path messages are sent periodically to refresh path states.
The refresh interval is controlled by a variable called the refresh-time
, which is the periodical
refresh timer expressed in seconds. A path state times out if
a router does not receive a specified number of consecutive path messages.
This number is specified by a variable called keep-multiplier
. Path states are kept for ( (keep-multiplier
+ 0.5) x 1.5 x refresh-time
) seconds.
Resv Messages
Each receiver host sends reservation request (Resv) messages upstream toward senders and sender applications. Resv messages must follow exactly the reverse path of path messages. Resv messages create and maintain a reservation state in each router along the way.
Resv messages are sent periodically to refresh reservation states.
The refresh interval is controlled by the same refresh time variable,
and reservation states are kept for ( (keep-multiplier
+ 0.5) x 1.5 x refresh-time
) seconds.
PathTear Messages
PathTear messages remove (tear down) path states as well as dependent reservation states in any routers along a path. PathTear messages follow the same path as path messages. A PathTear typically is initiated by a sender application or by a router when its path state times out.
PathTear messages are not required, but they enhance network performance because they release network resources quickly. If PathTear messages are lost or not generated, path states eventually time out when they are not refreshed, and the resources associated with the path are released.
ResvTear Messages
ResvTear messages remove reservation states along a path. These messages travel upstream toward senders of the session. In a sense, ResvTear messages are the reverse of Resv messages. ResvTear messages typically are initiated by a receiver application or by a router when its reservation state times out.
ResvTear messages are not required, but they enhance network performance because they release network resources quickly. If ResvTear messages are lost or not generated, reservation states eventually time out when they are not refreshed, and the resources associated with the reservation are released.
PathErr Messages
When path errors occur (usually because of parameter problems in a path message), the router sends a unicast PathErr message to the sender that issued the path message. PathErr messages are advisory; these messages do not alter any path state along the way.
ResvErr Messages
When a reservation request fails, a ResvErr error message is delivered to all the receivers involved. ResvErr messages are advisory; these messages do not alter any reservation state along the way.
ResvConfirm Messages
Receivers can request confirmation of a reservation request, and this confirmation is sent with a ResvConfirm message. Because of the complex RSVP flow-merging rules, a confirmation message does not necessarily provide end-to-end confirmation of the entire path. Therefore, ResvConfirm messages are an indication, not a guarantee, of potential success.
Juniper Networks routers never request confirmation using the ResvConfirm message; however, a Juniper Networks router can send a ResvConfirm message if it receives a request from another vendor's equipment.
MTU Signaling in RSVP
The maximum transmission unit (MTU) is the largest size packet or frame, in bytes, that can be sent in a network. An MTU that is too large might cause retransmissions. Too small an MTU might cause the router to send and handle relatively more header overhead and acknowledgments. There are default values for MTUs associated with various protocols. You can also explicitly configure an MTU on an interface.
When an LSP is created across a set of links with different MTU sizes, the ingress router does not know what the smallest MTU is on the LSP path. By default, the MTU for an LSP is 1,500 bytes.
If this MTU is larger than the MTU of one of the intermediate links, traffic might be dropped, because MPLS packets cannot be fragmented. Also, the ingress router is not aware of this type of traffic loss, because the control plane for the LSP would still function normally.
To prevent this type of packet loss in MPLS LSPs, you can configure MTU signaling in RSVP. This feature is described in RFC 3209. Juniper Networks supports the Integrated Services object for MTU signaling in RSVP. The Integrated Services object is described in RFCs 2210 and 2215. MTU signaling in RSVP is disabled by default.
To avoid packet loss due to MTU mismatches, the ingress router needs to do the following:
Signal the MTU on the RSVP LSP—To prevent packet loss from an MTU mismatch, the ingress router needs to know what the smallest MTU value is along the path taken by the LSP. Once this MTU value is obtained, the ingress router can assign it to the LSP.
Fragment packets—Using the assigned MTU value, packets that exceed the size of the MTU can be fragmented into smaller packets on the ingress router before they are encapsulated in MPLS and sent over the RSVP-signaled LSP.
Once both MTU signaling and packet fragmentation have been enabled on an ingress router, any route resolving to an RSVP LSP on this router uses the signaled MTU value.
The following are limitations to MTU signaling in RSVP:
Changes in the MTU value might cause a temporary loss of traffic in the following situations:
For link protection and node protection, the MTU of the bypass is only signaled at the time the bypass becomes active. During the time it takes for the new path MTU to be propagated, packet loss might occur because of an MTU mismatch.
For fast reroute, the MTU of the path is updated only after the detour becomes active, causing a delay in an update to the MTU at the ingress router. Until the MTU is updated, packet loss might occur if there is an MTU mismatch.
In both cases, only packets that are larger than the detour or bypass MTU are lost.
When an MTU is updated, it triggers a change in the next hop. Any change in the next hop causes the route statistics to be lost.
The minimum MTU supported for MTU signaling in RSVP is 1,488 bytes. This value prevents a false or incorrectly configured value from being used.
For single-hop LSPs, the MTU value displayed by the
show
commands is the RSVP-signaled value. However, this MPLS value is ignored and the correct IP value is used.